PurposeThe COVID-19 pandemic, beginning in early 2020, has resulted in massive social, economic, political and public health upheaval around the world. We established a national longitudinal cohort study, the COVID-19 Coping Study, to investigate the effects of pandemic-related stressors and changes in life circumstances on mental health and well-being among middle-aged and older adults in the USA.ParticipantsFrom 2 April to 31 May 2020, 6938 adults aged ≥55 years were recruited from all 50 US states, the District of Columbia and Puerto Rico using online, multi-frame non-probability-based sampling.Findings to dateMean age of the baseline sample was 67.3 years (SD: 7.9 years) and 64% were women. Two in three adults reported leaving home only for essential purposes in the past week (population-weighted proportion: 69%; 95% CI: 68% to 71%). Nearly one in five workers aged 55–64 years was placed on a leave of absence or furloughed since the start of the pandemic (17%; 95% CI: 14% to 20%), compared with one in three workers aged ≥75 years (31%; 95% CI: 21% to 44%). Nearly one-third of adults screened positive for each of depression (32%; 95% CI: 30% to 34%), anxiety (29%; 28% to 31%) and loneliness (29%; 95% CI: 27% to 31%), with decreasing prevalence of each with increasing age.Future plansMonthly and annual follow-ups of the COVID-19 Coping Study cohort will assess longitudinal changes to mental health, cognitive health and well-being in relation to social, behavioural, economic and other COVID-19-related changes to life circumstances. Quantitative and in-depth qualitative interview data will be collected through online questionnaires and telephone interviews. Cohort data will be archived for public use.
We identify problematic areas throughout the Science, Technology, Engineering and Mathematics (STEM) pipeline that perpetuate racial disparities in academia. Distinct ways to curtail these disparities include early exposure and access to resources, supportive mentoring networks and comprehensive training programs specifically for racially minoritized students and trainees at each career stage. These actions will revitalize the STEM pipeline. ll
In the Drosophila model of aggression, males and females fight in same-sex pairings, but a wide disparity exists in the levels of aggression displayed by the 2 sexes. A screen of Drosophila Flylight Gal4 lines by driving expression of the gene coding for the temperature sensitive dTRPA1 channel, yielded a single line (GMR26E01-Gal4) displaying greatly enhanced aggression when thermoactivated. Targeted neurons were widely distributed throughout male and female nervous systems, but the enhanced aggression was seen only in females. No effects were seen on female mating behavior, general arousal, or male aggression. We quantified the enhancement by measuring fight patterns characteristic of female and male aggression and confirmed that the effect was female-specific. To reduce the numbers of neurons involved, we used an intersectional approach with our library of enhancer trap flp-recombinase lines. Several crosses reduced the populations of labeled neurons, but only 1 cross yielded a large reduction while maintaining the phenotype. Of particular interest was a small group (2 to 4 pairs) of neurons in the approximate position of the pC1 cluster important in governing male and female social behavior. Female brains have approximately 20 doublesex (dsx)-expressing neurons within pC1 clusters. Using dsxFLP instead of 357FLP for the intersectional studies, we found that the same 2 to 4 pairs of neurons likely were identified with both. These neurons were cholinergic and showed no immunostaining for other transmitter compounds. Blocking the activation of these neurons blocked the enhancement of aggression.
Various intracellular degradation organelles, including autophagosomes, lysosomes, and endosomes, work in tandem to perform autophagy, which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. This paper aims to describe an approach to reproducibly identify and distinguish subcellular structures involved in macroautophagy. Methods are provided that help avoid common pitfalls. How to distinguish between lysosomes, lipid droplets, autolysosomes, autophagosomes, and inclusion bodies are also discussed. These methods use transmission electron microscopy (TEM), which is able to generate nanometer‐scale micrographs of cellular degradation components in a fixed sample. Serial block face‐scanning electron microscopy is also used to visualize the 3D morphology of degradation machinery using the Amira software. In addition to TEM and 3D reconstruction, other imaging techniques are discussed, such as immunofluorescence and immunogold labeling, which can be used to classify cellular organelles, reliably and accurately. Results show how these methods may be used to accurately quantify cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or ablation of the dynamin‐related protein 1.
Autophagosomes and lysosomes work in tandem to conduct autophagy, an intracellular degradation system which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. Although many studies have investigated autophagy to elucidate disease pathogenesis, specific identification of the various components of the cellular degradation machinery remains difficult. The goal of this paper is to describe an approach to reproducibly identify and distinguish subcellular structures involved in autophagy. We provide methods that avoid common pitfalls, including a detailed explanation for how to distinguish lysosomes and lipid droplets and discuss the differences between autophagosomes and inclusion bodies. These methods are based on using transmission electron microscopy (TEM), capable of generating nanometer-scale micrographs of cellular degradation components in a fixed sample. In addition to TEM, we discuss other imaging techniques, such as immunofluorescence and immunogold labeling, which can be utilized for the reliable and accurate classification of cellular organelles. Our results show how these methods may be employed to accurately quantify the cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or the ablation of dynamin-related protein 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.