BackgroundProstate-specific membrane antigen (PSMA) is a promising target for diagnostics and therapy of prostate carcinoma (PCa). Based on the hypothesis that PSMA expression can be modulated by variations in androgen deprivation therapy (ADT), we investigated the binding of a PSMA-directed radiopharmaceutical in vitro in order to get an insight of the interactions between altered premedication and PSMA expression before repetitive PSMA-directed PET/CT for therapy response and targeted therapy implementation.MethodsThe human castration-resistant PCa cell line VCaP (CRPC) was treated with either 1 nmol/L testosterone (T) over 20 passages yielding the androgen-sensitive cell line (revCRPC) or with 5 μmol/L abiraterone acetate (AA) generating the abiraterone-tolerant subtype CRPCAA. In these cell lines, T and AA were varied by either supply or withdrawal of T and AA. PSMA expression of the three cell culture models was detected by Western blot and immunohistochemical staining. For quantitative measurement of tracer uptake, 0.3 nmol/L 68Ga-labelled PSMA-HBED-CC peptide (100–300 kBq/ml) was added to different treated parallel cultures (n = 9 each). Time-dependent uptake per 106 cells of each culture was calculated and evaluated. PSMA mRNA expression was investigated by qPCR.ResultsPSMA expression increased dependently on intensified ADT in all three basic cell lines. 68Ga-PSMA-HBED-CC uptake almost doubled during 3 h in all cell lines (p < 0.01). Compared to the basic cells, pre-incubation with abiraterone for 48 h resulted in a significant increased uptake in CRPC (p < 0.001). In revCRPC, 48-h AA pre-incubation resulted in an eightfold higher uptake after 3 h (p < 0.001). Additional withdrawal of external testosterone increased the uptake up to tenfold (p < 0.01). The increase of PSMA expression upon ADT and AA treatments was confirmed by qPCR and Western blot data. Furthermore, in CRPCAA, 48-h AA withdrawal increased the uptake up to fivefold (p < 0.01).ConclusionsThe investigated three PCa cell culture subtypes represent a serial preclinical model of androgen deprivation therapy as a proxy for clinical situations with differing basal PSMA expression. The uptake of PSMA-binding tracers could be stimulated by therapeutic effective short-term variation in premedication in all stages of ADT response. These complex interactions have to be considered in the interpretation of diagnostic imaging using PSMA ligands as well as in the optimal timing of PSMA-based therapies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13550-015-0145-8) contains supplementary material, which is available to authorized users.
Suitable animal models and in vivo biomarkers are essential for development and evaluation of new therapeutic strategies in Alzheimer's disease (AD). 18 F-Fluorodeoxyglucose ( 18 F-FDG)-positron-emission tomography (PET) is an imaging biomarker that allows the assessment of cerebral glucose metabolism in vivo . While 18 F-FDG-PET/CT is an established tool in the evaluation of AD patients, its role in preclinical studies with AD mouse models remains unclear. Here, we want to review available studies on 18 F-FDG-PET/CT in AD mouse models in order to evaluate the method and its impact in preclinical AD research. Only a limited number of studies using 18 F-FDG-PET in AD mice were carried out so far showing contradictory findings in cerebral FDG uptake. Methodological differences as well as underlying pathological features of used mouse models seem to be accountable for those varying results. However, 18 F-FDG-PET can be a valuable tool in longitudinal in vivo therapy monitoring with a lot of potential for future studies.
BackgroundThe quantification of amyloid-beta (Aβ) peptides in blood plasma as potential biomarkers of Alzheimer’s disease (AD) is hampered by very low Aβ concentrations and the presence of matrix components that may interfere with the measurements.MethodsWe developed a two-step immunoassay for the simultaneous measurement of the relative levels of Aβ38, Aβ40 and Aβ42 in human EDTA plasma. The assay was employed for the study of 23 patients with dementia of the Alzheimer’s type (AD-D) and 17 patients with dementia due to other reasons (OD). We examined relationships with the clinical diagnosis, cerebral Aβ load as quantified by amyloid-positron emission tomography, apolipoprotein E genotype, Aβ levels and Tau protein in cerebrospinal fluid.ResultsPreconcentration of plasma Aβ peptides by immunoprecipitation substantially facilitated their immunological measurements. The Aβ42/Aβ40 and Aβ42/Aβ38 ratios were statistically significantly lower in the AD-D patients than in the OD group. The areas under the receiver operating characteristic curves reached 0.87 for the Aβ42/Aβ40 ratio and 0.80 for the Aβ42/Aβ38 ratio.ConclusionsThe measurement of plasma Aβ peptides with an immunological assay can be improved by preconcentration via immunoprecipitation with an antibody against the Aβ amino-terminus and elution of the captured peptides by heating in a mild detergent-containing buffer. Our findings support the Aβ42/Aβ40 ratio in blood plasma as a promising AD biomarker candidate which correlates significantly with the validated core biomarkers of AD. Further studies will be needed for technical advancement of the assay and validation of the biomarker findings.Electronic supplementary materialThe online version of this article (10.1186/s13195-018-0448-x) contains supplementary material, which is available to authorized users.
In contrast to benign tissues, the uptake of proven tumor lesions increases on (68)Ga-PSMA-PET/CT over time. A biphasic PET-study may lead to a better detection of tumor lesions in unequivocal findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.