Significance In type 1 diabetes (T1D), the insulin-producing pancreatic β-cells are destroyed by the immune system. Both genetic and environmental factors contribute to T1D risk. Candidate genes for T1D identified by genome-wide association studies have been proposed to act at both the immune system and the β-cell levels. This study shows that the risk variant rs3825932 in the candidate gene cathepsin H ( CTSH ) predicts β-cell function in both model systems and human T1D. Collectively, our data indicate that higher CTSH expression in β-cells may protect against immune-mediated damage and preserve β-cell function, thereby representing a possible therapeutic target. Our study reinforces the concept that candidate genes for T1D may affect disease progression by modulating survival and function of the β-cells.
Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type 1 diabetes in pancreatic islets. Eight of the regulated genes (CD83, IFNGR1, IL17RD, TRAF3IP2, IL27RA, PLCG2, MYO1B, and CXCR7) in these networks also harbored single nucleotide polymorphisms nominally associated with type 1 diabetes. Finally, the expression and cytokine regulation of these new candidate genes were confirmed in insulin-secreting INS-1 β-cells. Our results provide novel insight to the mechanisms behind type 1 diabetes pathogenesis and, thus, may provide the basis for the design of novel treatment strategies.
SUMMARY Type 1 diabetes is caused by autoimmune-mediated β cell destruction leading to insulin deficiency. The histone deacetylase SIRT1 plays an essential role in modulating several age-related diseases. Here we describe a family carrying a mutation in the SIRT1 gene, in which all five affected members developed an autoimmune disorder: four developed type 1 diabetes, and one developed ulcerative colitis. Initially, a 26-year-old man was diagnosed with the typical features of type 1 diabetes, including lean body mass, autoantibodies, T cell reactivity to β cell antigens, and a rapid dependence on insulin. Direct and exome sequencing identified the presence of a T-to-C exchange in exon 1 of SIRT1, corresponding to a leucine-to-proline mutation at residue 107. Expression of SIRT1-L107P in insulin-producing cells resulted in overproduction of nitric oxide, cytokines, and chemokines. These observations identify a role for SIRT1 in human autoimmunity and unveil a monogenic form of type 1 diabetes.
OBJECTIVETo determine the prevalence of residual β-cell function (RBF) in children after 3–6 years of type 1 diabetes, and to examine the association between RBF and incidence of severe hypoglycemia, glycemic control, and insulin requirements.RESEARCH DESIGN AND METHODSA total of 342 children (173 boys) 4.8–18.9 years of age with type 1 diabetes for 3–6 years were included. RBF was assessed by testing meal-stimulated C-peptide concentrations. Information regarding severe hypoglycemia within the past year, current HbA1c, and daily insulin requirements was retrieved from the medical records and through patient interviews.RESULTSNinety-two children (27%) had RBF >0.04 nmol/L. Patients with RBF <0.04 nmol/L were significantly more likely to have severe hypoglycemia than patients with RBF >0.04 nmol/L (odds ratio, 2.59; 95% CI, 1.10–7.08; P < 0.03). HbA1c was significantly higher in patients with RBF <0.04 nmol/L compared with patients with RBF >0.04 nmol/L (mean, 8.49 ± 0.08% [69.3 ± 0.9 mmol/mol] vs. 7.92 ± 0.13% [63.1 ± 1.4 mmol/mol]; P < 0.01), and insulin requirements were significantly lower in patients with RBF >0.2 nmol/L (mean ± SE: 1.07 ± 0.02 vs. 0.93 ± 0.07 units/kg/day; P < 0.04).CONCLUSIONSWe demonstrated considerable phenotypic diversity in RBF among children after 3–6 years of type 1 diabetes. Children with RBF are at lower risk for severe hypoglycemia, have better diabetes regulation, and have lower insulin requirements compared with children without RBF. There appears to be a lower limit for stimulated RBF of ∼0.04 nmol/L that confers a beneficial effect on hypoglycemia and metabolic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.