Plant reproduction relies on the highly regulated growth of the pollen tube for sperm delivery. This process is controlled by secreted RALF signaling peptides, which have previously been shown to be perceived by Catharanthus roseus RLK1-like (CrRLK1Ls) membrane receptor-kinases/LORELEI-like GLYCOLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED PROTEINS (LLG) complexes, or by leucine-rich repeat (LRR) extensin proteins (LRXs). Here, we demonstrate that RALF peptides fold into bioactive, disulfide bond-stabilized proteins that bind the LRR domain of LRX proteins with low nanomolar affinity. Crystal structures of LRX2–RALF4 and LRX8–RALF4 complexes at 3.2- and 3.9-Å resolution, respectively, reveal a dimeric arrangement of LRX proteins, with each monomer binding one folded RALF peptide. Structure-based mutations targeting the LRX–RALF4 complex interface, or the RALF4 fold, reduce RALF4 binding to LRX8 in vitro and RALF4 function in growing pollen tubes. Mutants targeting the disulfide-bond stabilized LRX dimer interface fail to rescue lrx infertility phenotypes. Quantitative biochemical assays reveal that RALF4 binds LLGs and LRX cell-wall modules with drastically different binding affinities, and with distinct and mutually exclusive binding modes. Our biochemical, structural, and genetic analyses reveal a complex signaling network by which RALF ligands instruct different signaling proteins using distinct targeting mechanisms.
Aims: High salinity stress impairs plant growth and development. Trehalose metabolism has been implicated in sugar signaling, and enhanced trehalose metabolism can positively regulate abiotic stress tolerance. However, the molecular mechanism(s) of the stress-related trehalose pathway and the role of individual trehalose biosynthetic enzymes for stress tolerance remain unclear. Results: Trehalose-6-phosphate phosphatase (TPP) catalyzes the final step of trehalose metabolism. Investigating the subcellular localization of the Arabidopsis thaliana TPP family members, we identified AtTPPD as a chloroplast-localized enzyme. Plants deficient in AtTPPD were hypersensitive, whereas plants overexpressing AtTPPD were more tolerant to high salinity stress. Elevated stress tolerance of AtTPPD overexpressors correlated with high starch levels and increased accumulation of soluble sugars, suggesting a role for AtTPPD in regulating sugar metabolism under salinity conditions. Biochemical analyses indicate that AtTPPD is a target of post-translational redox regulation and can be reversibly inactivated by oxidizing conditions. Two cysteine residues were identified as the redox-sensitive sites. Structural and mutation analyses suggest that the formation of an intramolecular disulfide bridge regulates AtTPPD activity. Innovation: The activity of different AtTPP isoforms, located in the cytosol, nucleus, and chloroplasts, can be redox regulated, suggesting that the trehalose metabolism might relay the redox status of different cellular compartments to regulate diverse biological processes such as stress responses. Conclusion: The evolutionary conservation of the two redox regulatory cysteine residues of TPPs in spermatophytes indicates that redox regulation of TPPs might be a common mechanism enabling plants to rapidly adjust trehalose metabolism to the prevailing environmental and developmental conditions. Antioxid. Redox Signal. 21, 1289-1304.
The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand–receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm’s monthly cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.