In this article, we present Tellurium, a powerful Python-based integrated environment designed for model building, analysis, simulation and reproducibility in systems and synthetic biology. Tellurium is a modular, cross-platform, and open-source integrated development environment (IDE) composed of multiple libraries, plugins, and specialized modules and methods. Tellurium ensures exchangeability and reproducibility of computational models by supporting SBML (Systems Biology Markup Language), SED-ML (Simulation Experiment Description Markup Language), the COMBINE archive, and SBOL (Synthetic Biology Open Language). Tellurium is a self-contained modeling platform which comes with a fully configured Python distribution independent of other local Python installations on the target machine. The main interface is based on the Spyder IDE which has a highly accessible user interface akin to MATLAB (https://www.mathworks.com/). Tellurium uses libRoadRunner as the default SBML simulation engine due to its superior performance, scalability and ease of integration. libRoadRunner supports deterministic simulations, stochastic simulations and steady state analyses. Tellurium also includes Antimony, a human-readable model definition language which can be converted to and from SBML. Other standard Python scientific libraries such as NumPy, SciPy, and matplotlib are included by default. Additionally, we include several user-friendly plugins and advanced modules for a wide-variety of applications, ranging from visualization tools to complex algorithms for bifurcation analysis and multidimensional parameter scanning. By combining multiple libraries, plugins, and modules into a single package, Tellurium provides a unified but extensible solution for biological modeling and simulation.
Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a “built-in” mechanism for the persistence of cooperation.
Summary:In this technical report we describe a simple extension to python-libSBML that allows users of Python to more easily construct SBML based models. The most commonly used package for constructing SBML models in Python is python-libSBML based on the C/C++ library libSBML. python-libSBML supports a comprehensive set of model types, but is difficult for new users to learn and requires long scripts to create even the simplest models. We present SimpleSBML, a package that allows users to add species, parameters, reactions, events, and rules to a libSBML model with only one command for each. Models can be exported to SBML format, and SBML files can be imported and converted to SimpleSBML commands that creates each element in a new model. This allows users to create new models and edit existing models for use with other software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.