Fas (also known as Apo-1 and CD95) receptor has been suggested to control T cell expansion by triggering T cell-autonomous apoptosis. This paradigm is based on the extensive lymphoproliferation and systemic autoimmunity in mice and humans lacking Fas or its ligand. However, with systemic loss of Fas, it is unclear whether T cell-extrinsic mechanisms contribute to autoimmunity. We found that tissue-specific deletion of Fas in mouse antigen-presenting cells (APCs) was sufficient to cause systemic autoimmunity, implying that normally APCs are destroyed during immune responses via a Fas-mediated mechanism. Fas expression by APCs was increased by exposure to microbial stimuli. Analysis of mice with Fas loss restricted to T cells revealed that Fas indeed controls autoimmune T cells, but not T cells responding to strong antigenic stimulation. Thus, Fas-dependent elimination of APCs is a major regulatory mechanism curbing autoimmune responses and acts in concert with Fas-mediated regulation of chronically activated autoimmune T cells.
The mechanisms by which the p53 tumour suppressor protein would, in vivo, co-ordinate the adaptive response to genotoxic stress is poorly understood. p53 has been shown to transactivate several genes that could be involved in two main cellular responses, growth arrest and apoptosis. To get further insight into the tissuespeci®c regulation of p53 transcriptional activity, we performed an extensive study looking at the expression of four well characterized p53-responsive genes, before and after g-irradiation in p53 wild-type (p53+/+) and p53-de®cient (p537/7) mice. The waf1, bax, fas and mdm2 genes were chosen for their dierent potential roles in the cellular response to stress. Our data demonstrate the strict p53-dependence of mRNA upregulation for bax, fas and mdm2 in irradiated tissues and con®rm such ®ndings for waf1. They further highlight complex levels of regulatory mechanisms that could lead, in vivo, to selective transcriptional activation of genes by p53. In addition, our results provide arguments for the involvement of p53 in the basal mRNA expression of the four genes in some organs. Finally, in situ expression of Bax and p21Waf-1 protein suggests, at least in lymphoid organs, a direct correlation between selective p53-target gene expression and a particular response of a cell to ionising radiation.
NKT cell activation by α-galactosylceramide (α-GalCer) inhibits autoimmune diabetes in NOD mice, in part by inducing recruitment to pancreatic lymph nodes (PLNs) of mature dendritic cells (DCs) with disease-protective effects. However, how activated NKT cells promote DC maturation, and what downstream effect this has on diabetogenic T cells was unknown. Activated NKT cells were found to produce a soluble factor(s) inducing DC maturation. Initially, there was a preferential accumulation of mature DCs in the PLNs of α-GalCer-treated NOD mice, followed by a substantial increase in T cells. Adoptive transfer of a diabetogenic CD8 T cell population (AI4) induced a high rate of disease (75%) in PBS-treated NOD recipients, but not in those pretreated with α-GalCer (8%). Significantly, more AI4 T cells accumulated in PLNs of α-GalCer than PBS-treated recipients, while no differences were found in mesenteric lymph nodes from each group. Compared with those in mesenteric lymph nodes, AI4 T cells entering PLNs underwent greater levels of apoptosis, and the survivors became functionally anergic. NKT cell activation enhanced this process. Hence, activated NKT cells elicit diabetes protection in NOD mice by producing a soluble factor(s) that induces DC maturation and accumulation in PLNs, where they subsequently recruit and tolerize pathogenic T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.