Several lines of evidence suggest that accumulation of cytoplasmic -catenin transduces an oncogenic signal. We show that -catenin is ubiquitinated and degraded by the proteosome and that -catenin stability is regulated by a diacylglycerol-independent protein kinase Clike kinase activity, which is required for -catenin ubiquitination. We also define a six-amino acid sequence found in both -catenin and the NF-B regulatory protein IB␣, which, upon phosphorylation, targets both proteins for ubiquitination. Mutation of a single serine within the ubiquitination targeting sequence prevents ubiquitination of -catenin. Mutations within the ubiquitination targeting sequence of -catenin may be oncogenic.
In this study we show that a breast cancer cell line (SKBR3) that expresses no E-cadherin and very low levels of beta-catenin protein and exhibits a poorly adhesive phenotype in Matrigel responds to retinoic acid (RA) by a marked increase in epithelial differentiation. Specifically, treatment of cells with all-trans-RA, 9-cis-RA, or a RA receptor alpha-specific ligand resulted in a large increase in cell-cell adhesive strength and stimulated the formation of fused cell aggregates in Matrigel. A retinoid X receptor-specific ligand was ineffective. Exposure of cells to 9-cis-RA for as little as 4 h was sufficient to maintain the adhesive phenotype for at least 4 days. The effects of 9-cis-RA required protein and RNA synthesis, but were not mediated by factors secreted by stimulated cells or by direct cell contact and did not require serum. These 9-cis-RA-induced morphological effects were completely reversed by growing cells in 50 microM Ca2+, suggesting a mechanism involving a 9-cis-RA-induced increase in Ca(2+)-dependent adhesion. Consistent with this, beta-catenin protein levels were markedly elevated in the 9-cis-RA-treated cells, and beta-catenin became localized to a Triton-insoluble pool at regions of cell-cell contact. No change could be detected in beta-catenin steady state messenger RNA levels, but 9-cis-RA did increase beta-catenin protein stability. Treatment of cells with low calcium medium did not prevent the 9-cis-RA-induced increase in total beta-catenin protein, but did prevent its movement to a Triton-insoluble pool at the cell membrane. Among several kinase inhibitors, only the broad spectrum kinase inhibitor staurosporine and the protein kinase C inhibitor bisindoylmaleimide reversed the morphological changes induced by 9-cis-RA. Like treatment with low calcium medium, these inhibitors did not prevent the 9-cis-RA-induced increase in total beta-catenin protein levels, but completely prevented the movement of beta-catenin to the cell membrane. These results point to a role for beta-catenin and serine kinase activity in mediating the action of 9-cis-RA in epithelial differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.