The transport of Pb2+ through a sensory gel, a polymerized crystalline colloidal array hydrogel with immobilized benzo-18-crown-6, is important for understanding and optimizing the sensor. Square wave voltammetry at a Hg/Au electrode reveals many parameters. The partition coefficient for Pb2+ into a control gel (no crown ether), K(p), is 1.00 +/- 0.018 (errors reported are SEM). The porosity, epsilon, of the gel is 0.90 +/- 0.01. Log K(c) for complexation in the gel is 2.75 +/- 0.014. Log K(c) in aqueous solution for Pb2+ with the ligand 4-acryloylamidobenzo-18-crown-6 is 3.01 +/- 0.010 with dissociation rate k(d) = (8.34 +/- 0.45) x 10(2) s(-1) and association rate k(f) = (8.79 +/- 0.025) x 10(7) M(-1) s(-1). The partition coefficient of the ligand 4-acryloylamidobenzo-18-crown-6 into the control gel, K(p,L) is 2.07 +/- 0.15. The diffusion coefficient of Pb2+ in the control gel is 6.72 x 10(-6) +/- 0.12 cm(2)/s. For the sensor gel, but not control gel, diffusion coefficients are location dependent. The range of diffusion coefficients for Pb2+ in the probed locations was found to be (6.11-12.60) x 10(-7) cm(2)/s for 0.91 mM Pb2+ and (2.84-9.39) x 10(-7) cm(2)/s for 0.35 mM Pb2+. Lead binding in the sensor gel is slightly less avid than in solution. This is attributed, in part, to the demonstrated affinity of the ligand 4-acryloylamidobenzo-18-crown-6 to the gel. Diffusion coefficients determined for the sensor gel were found to be location dependent. This is attributed to heterogeneities in the crown concentration in the gel. Analysis of diffusion coefficients and rate constants show that diffusion and not chemical relaxation will limit the time response of the material.
Understanding the rate parameters of metal ion-ligand complexes is necessary for sensing, separations, and responsive materials. The complexation between 18-crown-6 and lead(II) is of particular interest due to the potential use of this chemistry in sensors and separations. We have applied square wave voltammetry at a glassy carbon mercury film electrode to this problem. Lead(II) in aqueous solution containing an excess of 18-crown-6, studied with different experimental time scales, yields stoichiometry, binding constants, and rate constants (25 degrees C). For pulse times longer than 10 ms, the glassy carbon mercury film electrode acts as a planar electrode. For shorter pulse times, a roughness correction factor must be used to calculate dimensionless current because of the increase in effective area due to the droplike nature of the adsorbed mercury. Lead(II) forms a 1:1 complex with 18-crown-6 in both nitrate and perchlorate media. Log K for the complex with the nitrate counterion is 4.13 +/- 0.09 (SEM); in the presence of perchlorate it is 4.35 +/- 0.09 (SEM). The formation rate constants, kf, for the nitrate and perchlorate systems are (3.82 +/- 0.89) x 107 and (5.92 +/- 1.97) x 106 M-1 s-1, respectively. The dissociation rate constants, kd, are (2.83 +/- 0.66) x 103 s-1 with nitrate as the counterion and (2.64 +/- 0.88) x 102 s-1 with perchlorate as the counterion. The significant difference in rate constants for the two anions is probably caused by the ion pairing that occurs with lead(II) nitrate.
The reversible sequestration and release of metal ions is an important objective in biological and environmental research. Unfortunately, although there have been dramatic examples of metal ion activity control, there are very few quantitative investigations of stoichiometry, equilibria and kinetics. A significant contributor to this lack of quantitative work is the complexity of many photochromic systems. Therefore, we have attempted to create a simple, reversible photochromic metal-ion chelator that can be analyzed quantitatively. The chelator should have certain other attributes as well, namely, that it binds to divalent metal ions (because of their extreme biological importance) and that it binds metal ions in the dark so that light is used to release metal ions rather than sequester them. The photochromic chelator (1) binds to divalent metal ions [Zn(II), Cu(II), Pb(II), Hg(II), Fe(II), Co(II) and Cd(II); other metal ions have not yet been tested] in the dark with a significant binding strength. In both methanol (by spectrophotometry) and methanol-water (by voltammetry), the stoichiometry of the 1-Zn(II) complex is 2:1. The binding constant (K1K2) is on the order of 10(12)-10(14) M(-2) in methanol and 5.0 x 10(8) M(-2) in 50% aqueous methanol. The chelator 1 is photolabile, yielding 2 with a quantum efficiency of 0.91. In a solution containing excess Zn(II), so that over 99% of the ligand exists as the monodentate complex, photolysis produces 2 with a quantum efficiency of 0.15. A kinetic analysis leads to the conclusion that the complex itself is photolabile.
The reversible sequestration and release of metal ions is an important objective in biological and environmental research. Unfortunately, although there have been dramatic examples of metal ion activity control, there are very few quantitative investigations of stoichiometry, equilibria and kinetics. A significant contributor to this lack of quantitative work is the complexity of many photochromic systems. Therefore, we have attempted to create a simple, reversible photochromic metal‐ion chelator that can be analyzed quantitatively. The chelator should have certain other attributes as well, namely, that it binds to divalent metal ions (because of their extreme biological importance) and that it binds metal ions in the dark so that light is used to release metal ions rather than sequester them. The photochromic chelator (1) binds to divalent metal ions [Zn(II), Cu(II), Pb(II), Hg(II), Fe(II), Co(II) and Cd(II); other metal ions have not yet been tested] in the dark with a significant binding strength. In both methanol (by spectrophotometry) and methanol–water (by voltammetry), the stoichiometry of the 1–Zn(II) complex is 2:1. The binding constant (K1K2) is on the order of 1012–1014M−2 in methanol and 5.0 × 108M−2 in 50% aqueous methanol. The chelator 1 is photolabile, yielding 2 with a quantum efficiency of 0.91. In a solution containing excess Zn(II), so that over 99% of the ligand exists as the monodentate complex, photolysis produces 2 with a quantum efficiency of 0.15. A kinetic analysis leads to the conclusion that the complex itself is photolabile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.