Efficient RNA extraction methods are needed to study transcript regulation. Such methods must lyse the cell without degrading the genetic material. For cyanobacteria this can be particularly challenging because of the presence of the cyanobacteria cell envelope. The great breath of cyanobacterial shape and size (unicellular, colonial, or filamentous multicellular) created a variety of cell lysis methods. However, there is still a lack of reliable techniques for nucleic acid extraction for several types of cyanobacteria.
Here we designed and tested 15 extraction methods using physical, thermic or chemical stress on the filamentous cyanobacteria
Planktothrix agardhii
. Techniques based on the use of beads, sonication, and heat shock appeared to be too soft to break the
Planktothrix agardhii
cell envelope, whereas techniques based on the use of detergents degraded the cell envelope but also the RNA. Two protocols allowed to successfully obtain good-quality RNA. The first protocol consisted to manually crush the frozen cell pellet with a pestle and the second was based on the use of high-intensity ultra-sonication. When comparing these two, the high-intensity ultra-sonication protocol was less laborious, faster and allowed to extract 3.5 times more RNA compared to the liquid nitrogen pestle protocol. The high-intensity ultra-sonication protocol was then tested on five
Planktothrix
strains, this protocol allowed to obtain >8.5 μg of RNA for approximatively 3.5 × 10
8
cells. The extracted RNA were characterized by 260/280 and 260/230 ratio > to 2, indicating that the samples were devoid of contaminant, and RNA Quality Number > to 7, meaning that the integrity of RNA was preserved with this extraction method. In conclusion, the method we developed based on high-intensity ultra-sonication proved its efficacy in the extraction of
Planktothrix
RNA and could be helpful for other types of samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.