Tumors contain oxygenated and hypoxic regions, so the tumor cell population is heterogeneous. Hypoxic tumor cells primarily use glucose for glycolytic energy production and release lactic acid, creating a lactate gradient that mirrors the oxygen gradient in the tumor. By contrast, oxygenated tumor cells have been thought to primarily use glucose for oxidative energy production. Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative metabolism of oxygenated tumor cells. There is therefore a symbiosis in which glycolytic and oxidative tumor cells mutually regulate their access to energy metabolites. We identified monocarboxylate transporter 1 (MCT1) as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate for oxidative metabolism. Inhibiting MCT1 with α-cyano-4-hydroxycinnamate (CHC) or siRNA in these cells induced a switch from lactate-fueled respiration to glycolysis. A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung carcinoma and xenotransplanted human colorectal adenocarcinoma cells was observed after administration of CHC. This retarded tumor growth, as the hypoxic/glycolytic tumor cells died from glucose starvation, and rendered the remaining cells sensitive to irradiation. As MCT1 was found to be expressed by an array of primary human tumors, we suggest that MCT1 inhibition has clinical antitumor potential.
Arsenic trioxide (As 2 O 3 ) is an effective therapeutic against acute promyelocytic leukemia and certain solid tumors. Because As 2 O 3 inhibits mitochondrial respiration in leukemia cells, we hypothesized that As 2 O 3 might enhance the radiosensitivity of solid tumors by increasing tumor oxygenation [partial pressure of oxygen (pO 2 )] via a decrease in oxygen consumption. Two murine models of radioresistant hypoxic cancer were used to study the effects of As 2 O 3 . We measured pO 2 and the oxygen consumption rate in vivo by electron paramagnetic resonance oximetry and 19 fluorine-MRI relaxometry. Tumor perfusion was assessed by Patent blue staining. In both models, As 2 O 3 inhibited mitochondrial respiration, leading to a rapid increase in pO 2 . The decrease in oxygen consumption could be explained by an observed decrease in glutathione in As 2 O 3 -treated cells, as this could increase intracellular reactive oxygen species that can disrupt mitochondrial membrane potential. When tumors were irradiated during periods of As 2 O 3 -induced augmented oxygenation, radiosensitivity increased by 2.2-fold compared with control mice. Notably, this effect was abolished when temporarily clamped tumors were irradiated. Together, our findings show that As 2 O 3 acutely increases oxygen consumption and radiosensitizes tumors, providing a new rationale for clinical investigations of As 2 O 3 in irradiation protocols to treat solid tumors. Cancer Res; 72(2); 482-90. Ó2011 AACR.
Recently, we have developed a new electron paramagnetic resonance (EPR) protocol in order to estimate tissue oxygen consumption in vivo. Because it is crucial to probe the heterogeneity of response in tumors, the aim of this study was to apply our protocol, together with (19)F MRI relaxometry, to the mapping of the oxygen consumption in tumors. The protocol includes the continuous measurement of tumor po(2) during the following respiratory challenge: (i) basal values during air breathing; (ii) increasing po(2) values during carbogen breathing until saturation of tissue with oxygen; (iii) switching back to air breathing. We have demonstrated previously using EPR oximetry that the kinetics of return to the basal value after oxygen saturation are mainly governed by tissue oxygen consumption. This challenge was applied in hyperthyroid mice (generated by chronic treatment with L-thyroxine) and control mice, as hyperthyroidism is known to dramatically affect the oxygen consumption rate of tumor cells. Our recently developed snapshot inversion recovery MRI fluorocarbon oximetry technique allowed the po(2) return kinetics to be measured with a high temporal resolution. The kinetic constants (i.e. oxygen consumption rates) were higher for tumors from hyperthyroid mice than from control mice, data that are consistent with our previous EPR study. The corresponding histograms of the (19)F MRI data showed that the kinetic constants displayed a shift to the right for the hyperthyroid group, indicating a higher oxygen consumption in these tumors. The color maps showed a large heterogeneity in terms of oxygen consumption rate within a tumor. In conclusion, (19)F MRI relaxometry allows the noninvasive mapping of the oxygen consumption in tumors. The ability to assess the heterogeneity of tumor response is critical in order to identify potential tumor regions that might be resistant to treatment and therefore produce a poor response to therapy.
The oxygen consumption rate in tumors affects tumor oxygenation and response to therapies. A new EPR method was developed to measure tissue oxygen consumption non-invasively. The protocol was based on the measurement of pO(2) during a carbogen challenge. The following sequence was used: (1) basal value during air breathing; (2) saturation of tissue with oxygen by carbogen breathing; (3) switch back to air breathing. The assumption was that the kinetics of the return to the basal value after oxygen saturation would be governed mainly by tissue oxygen consumption. This challenge was applied in hyperthyroid mice (generated by chronic treatment with l-thyroxine) and control mice because hyperthyroidism is known to dramatically affect the oxygen consumption rate of tumor and muscle cells. Muscle and tumor cells from the hyperthyroid mice consumed oxygen faster than muscle and tumor cells from the control mice, which is consistent with the results of in vitro studies. Tumor perfusion was not affected by the treatment with l-thyroxine. This method gives an index that may reasonably be ascribed to the local oxygen consumption and has the unique advantage of being adaptable to in vivo studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.