The effects of preexercise photobiomodulation therapy (PBMT) to enhance performance, accelerate recovery, and attenuate exercise-induced oxidative stress were still not fully investigated, especially in high-level athletes. The aim of this study was to evaluate the effects of PBMT (using infrared low-level laser therapy) applied before a progressive running test on functional aspects, muscle damage, and inflammatory and oxidative stress markers in high-level soccer players. A randomized, triple-blind, placebo-controlled crossover trial was performed. Twenty-two high-level male soccer players from the same team were recruited and treated with active PBMT and placebo. The order of interventions was randomized. Immediately after the application of active PBMT or placebo, the volunteers performed a standardized high-intensity progressive running test (ergospirometry test) until exhaustion. We analyzed rates of oxygen uptake (VO2 max), time until exhaustion, and aerobic and anaerobic threshold during the intense progressive running test. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, levels of interleukin-1β (IL-1-β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), levels of thiobarbituric acid (TBARS) and carbonylated proteins, and catalase (CAT) and superoxide dismutase (SOD) activities were measured before and five minutes after the end of the test. PBMT increased the VO2 max (both relative and absolute values—p < 0.0467 and p < 0.0013, respectively), time until exhaustion (p < 0.0043), time (p < 0.0007) and volume (p < 0.0355) in which anaerobic threshold happened, and volume in which aerobic threshold happened (p < 0.0068). Moreover, PBMT decreased CK (p < 0.0001) and LDH (p < 0.0001) activities. Regarding the cytokines, PBMT decreased only IL-6 (p < 0.0001). Finally, PBMT decreased TBARS (p < 0.0001) and carbonylated protein levels (p < 0.01) and increased SOD (p < 0.0001)and CAT (p < 0.0001) activities. The findings of this study demonstrate that preexercise PBMT acts on different functional aspects and biochemical markers. Moreover, preexercise PBMT seems to play an important antioxidant effect, decreasing exercise-induced oxidative stress and consequently enhancing athletic performance and improving postexercise recovery. This trial is registered with Clinicaltrials.gov NCT03803956.
The effects of phototherapy (or photobiomodulation therapy) with low-level laser therapy (LLLT) and/or light-emitting diodes (LEDs) on human performance improvement have been widely studied. Few studies have examined its effect on muscular training and no studies have explored the necessary moment of phototherapy irradiations (i.e., before and/or after training sessions). The aim of this study was to determine the optimal moment to apply phototherapy irradiation when used in association with strength training. Forty-eight male volunteers (age between 18 to 35 years old) completed all procedures in this study. Volunteers performed the strength training protocol where either a phototherapy and/or placebo before and/or after each training session was performed using cluster probes with four laser diodes of 905 nm, four LEDs of 875 nm, and four LEDs of 640 nm-manufactured by Multi Radiance Medical™. The training protocol duration was 12 weeks with assessments of peak torque reached in maximum voluntary contraction test (MVC), load in 1-repetition maximum test (1-RM) and thigh circumference (perimetry) at larger cross-sectional area (CSA) at baseline, 4 weeks, 8 weeks, and 12 weeks. Volunteers from group treated with phototherapy before and placebo after training sessions showed significant (p < 0.05) changes in MVC and 1-RM tests for both exercises (leg extension and leg press) when compared to other groups. With an apparent lack of side effects and safety due to no thermal damage to the tissue, we conclude that the application of phototherapy yields enhanced strength gains when it is applied before exercise. The application may have additional beneficial value in post-injury rehabilitation where strength improvements are needed.
Cryotherapy for post-exercise recovery remains widely used despite the lack of quality evidence. Photobiomodulation therapy (PBMT) studies (with both low-level laser therapy and light-emitting diode therapy) have demonstrated positive scientific evidence to suggest its use. The study aims to evaluate PBMT and cryotherapy as a single or combined treatment on skeletal muscle recovery after eccentric contractions of knee extensors. Fifty healthy male volunteers were recruited and randomized into five groups (PBMT, cryotherapy, cryotherapy + PBMT, PMBT + cryotherapy, or placebo) for a randomized, double-blinded, placebo-controlled trial that evaluated exercise performance (maximum voluntary contraction (MVC)), delayed onset muscle soreness (DOMS), and muscle damage (creatine kinase (CK)). Assessments were performed at baseline; immediately after; and at 1, 24, 48, 72, and 96 h. Comparator treatments was performed 3 min after exercise and repeated at 24, 48, and 72 h. PBMT was applied employing a cordless, portable GameDay device (combination of 905 nm super-pulsed laser and 875- and 640-nm light-emitting diodes (LEDs); manufactured by Multi Radiance Medical, Solon - OH, USA), and cryotherapy by flexible rubber ice packs. PBMT alone was optimal for post-exercise recovery with improved MVC, decreased DOMS, and CK activity (p < 0.05) from 24 to 96 h compared to placebo, cryotherapy, and cryotherapy + PBMT. In the PBMT + cryotherapy group, the effect of PBMT was decreased (p > 0.05) but demonstrated significant improvement in MVC, decreased DOMS, and CK activity (p < 0.05). Cryotherapy as single treatment and cryotherapy + PBMT were similar to placebo (p > 0.05). We conclude that PBMT used as single treatment is the best modality for enhancement of post-exercise restitution, leading to complete recovery to baseline levels from 24 h after high-intensity eccentric contractions.
Context: Skeletal muscle fatigue and exercise performance are novel areas of research and clinical application in the photobiomodulation field, and positive outcomes have been reported in several studies; however, the optimal measures have not been fully established.Objective: To assess the acute effect of photobiomodulation therapy (PBMT) combining superpulsed lasers (low-level laser therapy) and light-emitting diodes (LEDs) on muscle performance during a progressive cardiopulmonary treadmill exercise test.Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty untrained male volunteers (age ¼ 26.0 6 6.0 years, height ¼ 175.0 6 10.0 cm, mass ¼ 74.8 6 10.9 kg).Intervention(s): Participants received PBMT with either combined superpulsed lasers and LED (active PBMT) or placebo at session 1 and the other treatment at session 2. All participants completed a cardiopulmonary test on a treadmill after each treatment. For active PBMT, we performed the irradiation at 17 sites on each lower limb (9 on the quadriceps, 6 on the hamstrings, and 2 on the gastrocnemius muscles), using a cluster with 12 diodes (four 905-nm superpulsed laser diodes with an average power of 0.3125 mW, peak power of 12.5 W for each diode, and frequency of 250 Hz; four 875-nm infrared LED diodes with an average power of 17.5 mW; and four 640-nm red LED diodes with an average power of 15 mW) and delivering a dose of 30 J per site.Main Outcome Measure(s): Distance covered, time until exhaustion, pulmonary ventilation, and dyspnea score.Results: The distance covered (1.96 6 0.30 versus 1.84 6 0.40 km, t 19 ¼ 2.119, P , .001) and time until exhaustion on the cardiopulmonary test (780.2 6 91.0 versus 742.1 6 94.0 seconds, t 19 ¼ 3.028, P , .001) was greater after active PBMT than after placebo. Pulmonary ventilation was greater (76.4 6 21.9 versus 74.3 6 19.8 L/min, t 19 ¼ 0.180, P ¼ .004) and the score for dyspnea was lower (3.0 [interquartile range ¼ 0.5-9.0] versus 4.0 [0.0-9.0], U ¼ 184.000, P , .001) after active PBMT than after placebo.Conclusions: The combination of lasers and LEDs increased the time, distance, and pulmonary ventilation and decreased the score of dyspnea during a cardiopulmonary test. Key Words: low-level laser therapy, light-emitting diode therapy, fatigue, progressive-intensity exercise Key PointsPhotobiomodulation therapy combines the use of superpulsed lasers and light-emitting diodes. When applied before a progressive cardiopulmonary exercise test on a treadmill, photobiomodulation therapy increased distance covered, time to exhaustion, and pulmonary ventilation and decreased dyspnea sensation in healthy volunteers.
The ergogenic effects of photobiomodulation therapy combined with a static magnetic field (PBMT-sMF) on exercises with characteristics similar to those of CrossFit® are unknown. This study was aimed at investigating the effects of PBMT-sMF applied at different times on recovery and physical performance in CrossFit® athletes by analyzing functional aspects, muscle damage, inflammatory processes, and oxidative stress. This was a prospectively registered, triple-blinded, placebo-controlled, crossover trial. CrossFit® athletes were recruited and assigned to receive one of the four possible interventions. Each intervention included protocols before and after the exercise (referred to as the workout of the day (WOD)). The four possibilities of intervention were as follows: placebo before and after WOD (placebo), PBMT-sMF before and placebo after WOD (PBMT-sMF before), placebo before and PBMT-sMF after WOD (PBMT-sMF after), and PBMT-sMF before and after WOD (PBMT-sMF before and after). The order of possibilities for the interventions was randomized. The primary outcome was the functional test performance. The secondary outcomes were the subjective perception of exertion, muscle damage, inflammation, and oxidative stress. The outcomes were measured before the WOD; immediately after the intervention; and 1, 24, and 48 hours after the WOD. Statistical analysis was performed using repeated measures ANOVA followed by the Bonferroni post hoc test to examine the differences between the interventions at each time point. Twelve participants were randomized and analyzed for each sequence. PBMT-sMF enhanced the performance on functional tests (calculated as a percentage of change) when applied before or after WOD in the assessment performed immediately post-WOD and at 24 and 48 hours later ( p < 0.05 ) compared to placebo and PBMT-sMF before and after WOD. In terms of the secondary outcomes, PBMT-sMF applied before or after WOD significantly decreased the creatine kinase, catalase, and superoxide dismutase activities and interleukin-6, thiobarbituric acid, and carbonylated protein levels (all p < 0.05 ) compared to the other possibilities of intervention. In addition, PBMT-sMF applied before and after WOD decreased creatine kinase activity at 24 hours and IL-6 levels at 24 and 48 hours compared to placebo ( p < 0.05 ). None of the participants reported any adverse events. PBMT-sMF enhanced the performance of functional tests, decreased the levels of biochemical markers of muscle damage and inflammation, decreased oxidative stress, and increased antioxidant activity in CrossFit® athletes when applied before or after WOD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.