Galactose-based phosphonate analogues of myo-inositol-1-phosphate and phosphatidylinositol have been synthesized from methyl beta-d-galactopyranoside. Michaelis-Arbuzov reaction of isopropyl diphenyl phosphite or triisopropyl phosphite with a 6-iodo-3,4-isopropylidene galactoside afforded the corresponding phosphonates. Deprotection of the diphenyl phosphonate afforded methyl beta-d-galactoside 6-phosphonate, an analogue of myo-inositol-1-phosphate. The diisopropyl esters of the diisopropyl phosphonate were selectively deprotected and the corresponding anion was coupled with 1,2-dipalmitoyl-sn-glycerol using dicyclohexylcarbodiimide. Deprotection afforded a methyl beta-d-galactoside-derived analogue of phosphatidylinositol. The galactose-derived analogues of phosphatidylinositol and myo-inositol-1-phosphate were not substrates for mycobacterial mannosyltransferases (at concentrations up to 1 mM) involved in phosphatidylinositol mannoside biosynthesis in a cell-free extract of Mycobacterium smegmatis. The galactose-derived phosphonate analogue of phosphatidylinositol was shown to be an inhibitor at 0.01 mM of PimA mannosyltransferase involved in the synthesis of phosphatidylinositol mannoside from phosphatidylinositol, and a weaker inhibitor of the next mannosyltransferase(s), which catalyzes the mannosylation of phosphatidylinositol mannoside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.