Aim: To generate a mouse model for slow progressive retinal neovascularisation through vascular endothelial growth factor (VEGF) upregulation. Methods: Transgenic mice were generated via microinjection of a DNA construct containing the human VEGF 165 (hVEGF) gene driven by a truncated mouse rhodopsin promoter. Mouse eyes were characterised clinically and histologically and ocular hVEGF levels assayed by ELISA. Results: One transgenic line expressing low hVEGF levels showed mild clinical changes such as focal fluorescein leakage, microaneurysms, venous tortuosity, capillary non-perfusion and minor neovascularisation, which remained stable up to 3 months postnatal. Histologically, there were some disturbance and thinning of inner and outer nuclear layers, with occasional focal areas of neovascularisation. By contrast, three other lines expressing high hVEGF levels presented with concomitantly severe phenotypes. In addition to the above, clinical features included extensive neovascularisation, haemorrhage, and retinal detachment; histologically, focal to extensive areas of neovascularisation associated with retinal folds, cell loss in the inner and outer nuclear layers, and partial retinal detachment were common. Conclusions: The authors generated four hVEGF overexpressing transgenic mouse lines with phenotypes ranging from mild to severe neovascularisation. These models are a valuable research tool to study excess VEGF related molecular and cellular changes and provide additional opportunities to test anti-angiogenic therapies.
Aims/hypothesis: Vascular endothelial growth factor (VEGF) plays a pivotal role in the pathogenesis of diabetic retinopathy. We investigated whether transgenic mice with moderate VEGF expression in photoreceptors (trVEGF029) developed changes similar to diabetic retinopathy and whether retinopathy progressed with time. Materials and methods: Human VEGF 165 (hVEGF 165 ) expression was analysed using ELISA and quantitative RT-PCR; serum glucose levels were also measured. Fundus fluorescein angiography (FA) was used to screen the degree of retinopathy from 6 weeks. Dynamic changes in the density of retinal microvasculature, as well as other changes similar to diabetic retinopathy, including retinal leucostasis, capillary endothelial cell and pericyte loss, and numbers of acellular capillaries, were quantified. Results: trVEGF029 mice were normoglycaemic and showed a moderate, short-term hVEGF 165 upregulation for up to 3 weeks. Changes in the retinal microvasculature not only mimicked those seen in diabetic retinopathy, but also showed similar pathological progression with time. FA at 6 weeks identified two phenotypes, mild and moderate, which were distinguished by the extent of vascular leakage. Quantitative analysis of diabetic retinopathy-like changes revealed that these parameters were tightly correlated with the initial degree of vascular leakage; low levels reflected slow and limited retinal microvascular changes in mild cases and high levels reflected more rapid and extensive changes in moderate cases. Conclusions/interpretation: The data suggest that even an early short-term elevation in hVEGF 165 expression might set a train of events that lead to progressive retinopathy. Induction of many features characteristic of diabetic retinopathy in trVEGF029 enables mechanisms leading to the disease state to be examined, and provides a relevant animal model for testing novel therapeutics.
Microarray-based gene expression analysis demonstrated that laser photocoagulation (LPC) of mouse eyes had a long-term effect on the expression of genes functionally related to tissue repair, cell migration, proliferation, ion, protein and nucleic acid metabolism, cell signaling, and angiogenesis. Six structural genes, including five crystallins (Cryaa, Cryba1, Crybb2, Crygc, Crygs) and keratin 1-12 (Krt1-12), the anti-angiogenic factor thrombospondin 1 (Tsp1), the retina- and brain-specific putative transcription factor tubby-like protein 1 (Tulp1), and transketolase (Tkt), a key enzyme in the pentose-phosphate pathway, were all shown to be up-regulated by real-time PCR and/or Western blotting. Immunohistochemistry localized five of these proteins to the laser lesions and surrounding tissue within the retina and pigmented epithelium. This is the first study demonstrating long-term changes in the expression of these genes associated with LPC. Therefore, it suggests that modulated gene expression might contribute to the long-term inhibitory effect of LPC. In addition, these genes present novel targets for gene-based therapies aimed at treating microangiopathies, especially diabetic retinopathy, a disease currently only treatable with LPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.