Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non‐activated C−H bonds. For many of these reactions, no “classical” chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
The search for affordable, green
biocatalytic processes is a challenge
for chemicals manufacture. Redox biotransformations are potentially
attractive, but they rely on unstable and expensive nicotinamide coenzymes
that have prevented their widespread exploitation. Stoichiometric
use of natural coenzymes is not viable economically, and the instability
of these molecules hinders catalytic processes that employ coenzyme
recycling. Here, we investigate the efficiency of man-made synthetic
biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis.
Extensive studies with a range of oxidoreductases belonging to the
“ene” reductase family show that these biomimetics are
excellent analogues of the natural coenzymes, revealed also in crystal
structures of the ene reductase XenA with selected biomimetics. In
selected cases, these biomimetics outperform the natural coenzymes.
“Better-than-Nature” biomimetics should find widespread
application in fine and specialty chemicals production by harnessing
the power of high stereo-, regio-, and chemoselective redox biocatalysts
and enabling reactions under mild conditions at low cost.
A series of synthetic nicotinamide cofactors were synthesized to replace natural nicotinamide cofactors and promote enoate reductase (ER)-catalyzed reactions without compromising activity or stereoselectivity of the bioreduction process. Conversions and enantioselectivities of up to >99% were obtained for C=C bioreductions and the process was successfully upscaled. Furthermore, high chemoselectivity was observed when employing these nicotinamide cofactor mimics (mNADs) with crude extracts in ER-catalyzed reactions.The asymmetric reduction of conjugated C=C double bonds using enoate reductases (ERs, EC 1.3.1.31) is receiving great interest in preparative organic chemistry.1 § Both authors contributed equally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.