Great importance is being given to the impact our food supply chain and consumers' food habits are having on the environment, human health, and animal welfare. One of the latest developments aiming at positively changing the food ecosystem is represented by cultured meat. This form of cellular agriculture has the objective to generate slaughter-free meat products starting from the cultivation of few cells harvested from the animal tissue of interest. As a consequence, a large number of cells has to be generated at a reasonable cost. Just to give an idea of the scale, there were billions of cells just in a bite of the first cultured-meat burger. Thus, one of the major challenges faced by the scientists involved in this new ambitious and fascinating field, is how to efficiently scale-up cell manufacture. Considering the great potential presented by cultured meat, audiences from different backgrounds are very interested in this topic and eager to be informed of the challenges and possible solutions in this area. In light of this, we will provide an overview of the main existing bioprocessing technologies used to scale-up adherent cells at a small and large scale. Thus, giving a brief technical description of these bioprocesses, with the main associated advantages and disadvantages. Moreover, we will introduce an alternative solution we believe has the potential to revolutionize the way adherent cells are grown, helping cultured meat become a reality.
Electrospun nanocomposites of poly(e-caprolactone) (PCL) incorporated with PCL-grafted cellulose nanocrystals (PCL-g-CNC) were produced. PCL chains were grafted from cellulose nanocrystals (CNC) surface by ring-opening polymerization. Grafting was confirmed by infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA). The resulting PCL-g-CNC were then incorporated into a PCL matrix at various loadings. Homogeneous nanofibers with average diameter decreasing with the addition of PCL-g-CNC were observed by scanning electron microscopy (SEM). PCL-g-CNC domains incorporated into the PCL matrix were visualized by transmission electron microscopy (TEM). Thermal and mechanical properties of the mats were analyzed by differential scanning calorimetry (DSC), TGA and dynamic mechanical analysis (DMA). The addition of PCL-g-CNC into the PCL matrix caused changes in the thermal behavior and crystallinity of the electrospun fibers. Significant improvements in Young's modulus and in strain at break with increasing PCL-g-CNC loadings were found. These results highlighted the great potential of cellulose nanocrystals as a reinforcement phase in electrospun PCL mats, which can be used as biomedical materials. V C 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43445.
Bionanocomposite films of poly(E-caprolactone) (PCL) and poly(butilene succinate-co-adipate) (PBSA) blends with cellulose nanocrystals (CNW) grafted with PCL chains (CNW-g-PCL) were prepared by solution casting and their thermal properties and crystallinity were studied. The CNW surface was modified with PCL chains by grafting "from" approaches, in an effort to improve their compatibility with the polymer blends. The grafting efficiency was evidenced by FTIR and TGA analysis. The acicular morphology of CNW-g-PCL was characterized by SEM. The TGA results showed an increase in the thermal stability of the CNW grafted with PCL chains. The PCL/PBSA blends showed higher thermal stability in comparison with the neat polymers and PCL/PBSA/CNW-g-PCL bionanocomposites. DSC results showed the CNW-g-PCL act as a nucleating agent in the bionanocomposites. Additionally, a better interaction of the CNW-g-PCL in the blends of 30/70 composition in comparison with the blends of 50/50 composition was characterized. The results obtained for aforementioned films prepared by solution casting encourage the production of such bionanocomposites by melt compounding (extrusion), aiming the achievement of new bionanocomposites materials with improved thermal and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.