Citation for published item:viskeD tF nd fldryD sFuF nd hriverD FF nd u'sD FtF nd elpslnD wF nd endreD iF nd froughD F nd gluverD wFiF nd qrootesD wFF nd qunwrdhnD wFvFF nd uelvinD vFF nd vovedyD tF nd oothmD eFFqF nd ylorD iFxF nd fmfordD FF nd flndErwthornD tF nd frownD wFtFsF nd hrinkwterD wFtF nd ropkinsD eFwF nd weyerD wFtF nd xorergD F nd eokD tFeF nd egiusD xFuF nd endrewsD FuF nd fuerD eFiF nd ghingD tFrFF nd gollessD wF nd gonselieD gFtF nd groomD FwF nd hviesD vFtFwF nd he roprisD F nd hunneD vF nd irdleyD iFwF nd illisD F nd posterD gF nd prenkD gFF nd r¤ ußlerD fF nd rolwerdD fFF nd rowlettD gF nd srrD rF nd trvisD wFtF nd tonesD hFrF nd u)eD FF nd veyD gFqF nd vngeD F nd vrEv¡ opezD wFeF nd v¡ opezE¡ nhezD ¡ eFF nd wddoxD F nd wdoreD fFpF nd wxughtEoertsD F nd wo'ettD eFtF nd xiholD FgF nd ywersD wFF nd lmrD hF nd ennyD FtF nd hillippsD F nd imletD uFeF nd opesuD gFgF nd resottD wF nd rotorD F nd dlerD iFwF nd nsomD eFiF nd eiertD wF nd hrpD F nd utherlndD F nd ¡ zquezEwtD tFeF nd vn umpenD iF nd ilkinsD FwF nd illimsD F nd rightD eFrF @PHISA 9qlxy end wss essemly @qeweA X end of survey report nd dt relese PF9D wonthly noties of the oyl estronomil oietyFD RSP @PAF ppF PHVUEPIPTF Further information on publisher's website: Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTThe Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ∼286 deg 2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm-1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sérsic fits, stellar masses, Hα-derived star formation rates, environment information, and group p...
Citation for published item:fryntD tFtF nd ywersD wFF nd oothmD eFFqF nd groomD FwF nd hriverD FF nd hrinkwterD wFtF nd vorenteD xFFpF nd gorteseD vF nd ottD xF nd gollessD wF nd heferD eF nd ylorD iFxF nd uonstntopoulosD sFF nd ellenD tFF nd fldryD sF nd frnesD vF nd fuerD eFiF nd flndErwthornD tF nd floomD tFF nd frooksD eFwF nd froughD F nd geilD qF nd gouhD F nd grotonD hF nd hviesD F nd illisD F nd pogrtyD vFwFF nd posterD gF nd qlzerookD uF nd qoodwinD wF nd qreenD eF nd qunwrdhnD wFvF nd rmptonD iF nd roD sFEF nd ropkinsD eFwF nd uewleyD vF nd vwreneD tFF nd veonEvlD FqF nd veslieD F nd wilroyD F nd vewisD qF nd viskeD tF nd v¡ opezE¡ nhezD ¡ eFF nd whjnD F nd wedlingD eFwF nd wetlfeD xF nd weyerD wF nd wouldD tF nd yreshkowD hF nd y9ooleD F nd ryD wF nd ihrdsD FxF nd hnksD F nd hrpD F nd weetD FwF nd homsD eFhF nd oniniD gF nd lherD gFtF @PHISA 9he ews qlxy urvey X instrument spei(tion nd trget seletionF9D wonthly noties of the oyl estronomil oietyFD RRU @QAF ppF PVSUEPVUWF Further information on publisher's website: Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTThe SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg 2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes r pet < 19.4, stellar masses 10 7 -10 12 M , and environments from isolated field galaxies through groups to clusters of ∼10 15 M .
We present a spectro-photometric survey of 2522 extragalactic globular clusters (GCs) around twelve early-type galaxies, nine of which have not been published previously. Combining space-based and multi-colour wide field ground-based imaging, with spectra from the Keck DEIMOS instrument, we obtain an average of 160 GC radial velocities per galaxy, with a high velocity precision of ∼ 15 km s −1 per GC. After studying the photometric properties of the GC systems, such as their spatial and colour distributions, we focus on the kinematics of metal-poor (blue) and metal-rich (red) GC subpopulations to an average distance of ∼ 8 effective radii from the galaxy centre.Our results show that for some systems the bimodality in GC colour is also present in GC kinematics. The kinematics of the red GC subpopulations are strongly coupled with the host galaxy stellar kinematics. The blue GC subpopulations are more dominated by random motions, especially in the outer regions, and decoupled from the red GCs. Peculiar GC kinematic profiles are seen in some galaxies: the blue GCs in NGC 821 rotate along the galaxy minor axis, whereas the GC system of the lenticular galaxy NGC 7457 appears to be strongly rotation supported in the outer region.We supplement our galaxy sample with data from the literature and carry out a number of tests to study the kinematic differences between the two GC subpopulations. We confirm that the GC kinematics are coupled with the host galaxy properties and find that the velocity kurtosis and the slope of their velocity dispersion profiles is different between the two GC subpopulations in more massive galaxies.
Although the colour distribution of globular clusters in massive galaxies is well known to be bimodal, the spectroscopic metallicity distribution has been measured in only a few galaxies. After redefining the calcium triplet index-metallicity relation, we use our relation to derive the metallicity of 903 globular clusters in 11 early-type galaxies. This is the largest sample of spectroscopic globular cluster metallicities yet assembled. We compare these metallicities with those derived from Lick indices finding good agreement. In six of the eight galaxies with sufficient numbers of high-quality spectra we find bimodality in the spectroscopic metallicity distribution. Our results imply that most massive early-type galaxies have bimodal metallicity as well as colour distributions. This bimodality suggests that most massive early-type galaxies experienced two periods of star formation.
We introduce and provide the scientific motivation for a wide-field photometric and spectroscopic chemodynamical survey of nearby early-type galaxies (ETGs) and their globular cluster (GC) systems. The SLUGGS a (SAGES Legacy Unifying Globulars and GalaxieS) survey is being carried out primarily with Subaru/Suprime-Cam and Keck/DEIMOS. The former provides deep gri imaging over a 900 arcmin 2 field-of-view to characterize GC and host galaxy colors and spatial distributions, and to identify spectroscopic targets. The NIR Ca II triplet provides GC line-of-sight velocities and metallicities out to typically ∼ 8 R e , and to ∼ 15 R e in some cases. New techniques to extract integrated stellar kinematics and metallicities to large radii (∼ 2-3 R e ) are used in concert with GC data to create two-dimensional velocity and metallicity maps for comparison with simulations of galaxy formation. The advantages of SLUGGS compared with other, complementary, 2D-chemodynamical surveys are its superior velocity resolution, radial extent, and multiple halo tracers. We describe the sample of 25 nearby ETGs, the selection criteria for galaxies and GCs, the observing strategies, the data reduction techniques, and modeling methods. The survey observations are nearly complete and more than 30 papers have so far been published using SLUGGS data. Here we summarize some initial results, including signatures of two-phase galaxy assembly, evidence for GC metallicity bimodality, and a novel framework for the formation of extended star clusters and ultracompact dwarfs. An integrated overview of current chemodynamical constraints on GC systems points to separate, in-situ formation modes at high redshifts for metal-poor and metal-rich GCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.