Citation for published item:viskeD tF nd fldryD sFuF nd hriverD FF nd u'sD FtF nd elpslnD wF nd endreD iF nd froughD F nd gluverD wFiF nd qrootesD wFF nd qunwrdhnD wFvFF nd uelvinD vFF nd vovedyD tF nd oothmD eFFqF nd ylorD iFxF nd fmfordD FF nd flndErwthornD tF nd frownD wFtFsF nd hrinkwterD wFtF nd ropkinsD eFwF nd weyerD wFtF nd xorergD F nd eokD tFeF nd egiusD xFuF nd endrewsD FuF nd fuerD eFiF nd ghingD tFrFF nd gollessD wF nd gonselieD gFtF nd groomD FwF nd hviesD vFtFwF nd he roprisD F nd hunneD vF nd irdleyD iFwF nd illisD F nd posterD gF nd prenkD gFF nd r¤ ußlerD fF nd rolwerdD fFF nd rowlettD gF nd srrD rF nd trvisD wFtF nd tonesD hFrF nd u)eD FF nd veyD gFqF nd vngeD F nd vrEv¡ opezD wFeF nd v¡ opezE¡ nhezD ¡ eFF nd wddoxD F nd wdoreD fFpF nd wxughtEoertsD F nd wo'ettD eFtF nd xiholD FgF nd ywersD wFF nd lmrD hF nd ennyD FtF nd hillippsD F nd imletD uFeF nd opesuD gFgF nd resottD wF nd rotorD F nd dlerD iFwF nd nsomD eFiF nd eiertD wF nd hrpD F nd utherlndD F nd ¡ zquezEwtD tFeF nd vn umpenD iF nd ilkinsD FwF nd illimsD F nd rightD eFrF @PHISA 9qlxy end wss essemly @qeweA X end of survey report nd dt relese PF9D wonthly noties of the oyl estronomil oietyFD RSP @PAF ppF PHVUEPIPTF Further information on publisher's website: Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTThe Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ∼286 deg 2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm-1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sérsic fits, stellar masses, Hα-derived star formation rates, environment information, and group p...
GASP (GAs Stripping Phenomena in galaxies with MUSE) is a new integral-field spectroscopic survey with MUSE at the VLT aiming at studying gas removal processes in galaxies. We present an overview of the survey and show a first example of a galaxy undergoing strong gas stripping. GASP is obtaining deep MUSE data for 114 galaxies at z=0.04-0.07 with stellar masses in the range 10 9.2 -10 11.5 M in different environments (galaxy clusters and groups, over more than four orders of magnitude in halo mass). GASP targets galaxies with optical signatures of unilateral debris or tails reminiscent of gas stripping processes ("jellyfish galaxies"), as well as a control sample of disk galaxies with no morphological anomalies. GASP is the only existing Integral Field Unit (IFU) survey covering both the main galaxy body and the outskirts and surroundings, where the IFU data can reveal the presence and the origin of the outer gas. To demonstrate GASP's ability to probe the physics of gas and stars, we show the complete analysis of a textbook case of a "jellyfish" galaxy, JO206. This is a massive galaxy (9 × 10 10 M ) in a low-mass cluster (σ ∼ 500 km s −1 ), at a small projected clustercentric radius and a high relative velocity, with ≥90kpc-long tentacles of ionized gas stripped away by ram pressure. We present the spatially resolved kinematics and physical properties of gas and stars, and depict the evolutionary history of this galaxy.
Citation for published item:fryntD tFtF nd ywersD wFF nd oothmD eFFqF nd groomD FwF nd hriverD FF nd hrinkwterD wFtF nd vorenteD xFFpF nd gorteseD vF nd ottD xF nd gollessD wF nd heferD eF nd ylorD iFxF nd uonstntopoulosD sFF nd ellenD tFF nd fldryD sF nd frnesD vF nd fuerD eFiF nd flndErwthornD tF nd floomD tFF nd frooksD eFwF nd froughD F nd geilD qF nd gouhD F nd grotonD hF nd hviesD F nd illisD F nd pogrtyD vFwFF nd posterD gF nd qlzerookD uF nd qoodwinD wF nd qreenD eF nd qunwrdhnD wFvF nd rmptonD iF nd roD sFEF nd ropkinsD eFwF nd uewleyD vF nd vwreneD tFF nd veonEvlD FqF nd veslieD F nd wilroyD F nd vewisD qF nd viskeD tF nd v¡ opezE¡ nhezD ¡ eFF nd whjnD F nd wedlingD eFwF nd wetlfeD xF nd weyerD wF nd wouldD tF nd yreshkowD hF nd y9ooleD F nd ryD wF nd ihrdsD FxF nd hnksD F nd hrpD F nd weetD FwF nd homsD eFhF nd oniniD gF nd lherD gFtF @PHISA 9he ews qlxy urvey X instrument spei(tion nd trget seletionF9D wonthly noties of the oyl estronomil oietyFD RRU @QAF ppF PVSUEPVUWF Further information on publisher's website: Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTThe SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg 2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes r pet < 19.4, stellar masses 10 7 -10 12 M , and environments from isolated field galaxies through groups to clusters of ∼10 15 M .
New Chandra X-ray data and extensive optical spectroscopy, obtained with AAOmega on the 3.9 m Anglo-Australian Telescope, are used to study the complex merger taking place in the galaxy cluster Abell 2744. Combining our spectra with data from the literature provides a catalog of 1237 redshifts for extragalactic objects lying within 15 ′ of the cluster center. From these, we confirm 343 cluster members projected within 3 Mpc of the cluster center. Combining positions and velocities, we identify two major substructures, corresponding to the remnants of two major subclusters. The new data are consistent with a post core passage, major merger taking place along an axis that is tilted well out of the plane of the sky, together with an interloping minor merger. Supporting this interpretation, the new X-ray data reveal enriched, low entropy gas from the core of the approaching, major subcluster, lying ∼ 2 ′ north of the cluster center, and a shock front to the southeast of the previously known bright, compact core associated with the receding subcluster. The X-ray morphology of the compact core is consistent with a Bullet-like cluster viewed from within ∼ 45 • of the merger axis. An X-ray peak ∼ 3 ′ northwest of the cluster center, with an associated cold front to the northeast and a trail of low entropy gas to the south, is interpreted as the remnant of an interloping minor merger taking place roughly in the plane of the sky. We infer approximate paths for the three merging components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.