Summary. Background and objective: Osteoprotegerin (OPG), a member of the tumor necrosis-factor receptor superfamily, plays an important role in bone remodeling and is also involved in vascular diseases. OPG is physically associated with von Willebrand factor (VWF), a glycoprotein involved in primary hemostasis, within the Weibel-Palade bodies (WPBs) of endothelial cells and in plasma. The present study aimed to elucidate the molecular mechanisms underlying the interaction between OPG and VWF. Methods and results: In a solid-phase binding assay, VWF was able to bind specifically to OPG in a calcium-dependent manner. This interaction displayed strong pH dependence with optimal binding occurring at pH 6.5 and was severely impaired by chloride-ion concentrations above 40 mM. Using a series of purified VWF derivatives the functional site that supports VWF interaction with OPG was localized on its Al domain. Fluorescence microscopy on human umbilical vein endothelial cells showed co-localization of VWF and OPG in WPBs. When secretion was induced, OPG remained associated with VWF in extracellular patches of release under biochemical conditions found in blood plasma. Conclusions: Our observations demonstrate the existence of an interactive site for OPG within the VWF A1-domain. This study established that the optimal biochemical parameters allowing a complex formation between VWF and OPG are those thought to prevail in the trans-Golgi network. These conditions would allow VWF to act as a cargo targeting OPG to WPBs. Finally, blood environments appear suitable to preserve the complex, which may participate in vascular injury, arterial calcification and inflammation.
The assembly of the enzyme activated Factor IX (FIXa) with its cofactor, activated Factor VIII (FVIIIa) is a crucial event in the coagulation cascade. The absence or dysfunction of either enzyme or cofactor severely compromises hemostasis, and causes hemophilia. FIXa is a notoriously inefficient enzyme, and needs FVIIIa to drive its hemostatic potential, by a mechanism that has remained largely elusive to date. In this study we employed Hydrogen-Deuterium eXchange-Mass Spectrometry (HDX-MS) to investigate how FIXa responds to assembly with FVIIIa in presence of phospholipids. This revealed a complex pattern of changes that partially overlaps with those that occur upon occupation of the substrate-binding site by an active site-directed inhibitor. Among the changes driven by both cofactor and substrate, HDX-MS highlighted several surface loops that have been implicated in allosteric networks in related coagulation enzymes. Inspection of FVIIIa-specific changes indicated that three helices are involved in FIXa-FVIIIa assembly. These are part of a basic interface that is also known as Exosite II. Mutagenesis of basic residues herein, followed by functional studies, indeed identified this interface as an extended FVIIIa-interactive patch. HDX-MS was also applied to recombinant FIXa variants that are associated with severe hemophilia B. This revealed that single amino acid substitutions can silence the extended network of FVIIIa-driven allosteric changes. We conclude that HDX-MS has the potential to visualize the functional impact of disease-associated mutations on enzyme-cofactor complexes in the hemostatic system.
The light chain of activated factor IX (FIXa) is involved in a number of functional properties, including FIXa enzymatic activity. This suggests the existence of a functional link between the FIXa light chain and the catalytic domain. The FIXa structure includes a few putative interactions between EGF2 and the protease domain. The role thereof has been addressed in this study. Recombinant FIX variants FIX-N92A, FIX-N92H, FIX-Y295A, and FIX-F299A were produced in 293 cells. After activation, the purified mutants were analyzed for a variety of functional parameters. None of these substitutions had a major effect on the interaction with antithrombin or the cleavage of the chromogenic substrate CH(3)SO(2)-d-CHG-Gly-Arg-p-nitroanilide. All FIXa mutants, however, exhibited a reduced level of factor X (FX) activation. Defective proteolytic activity occurred both in the absence and in the presence of activated factor VIII (FVIIIa). All mutants also exhibited a reduced level of FX activation in the absence of phospholipids. This suggests that putative interdomain contacts involving residues Asn(92), Tyr(295), and Phe(299) affect reactivity toward FX. Detailed kinetic studies in the presence of phospholipids and FVIIIa revealed substrate inhibition, particularly for mutants FIXa-N92A and FIXa-N92H. Surface plasmon resonance demonstrated that the same replacements weaken the association with the isolated factor VIII (FVIII) A2 domain and the FVIII light chain. This implies a defect in the formation of the FX-activating complex that is membrane-independent. We conclude that contacts between EGF2 and the protease domain of FIXa are crucial for FIXa enzymatic activity and for the assembly of the FX-activating complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.