Objectives
To investigate whether retrofitting insulation into homes can reduce cold associated hospital admission rates among residents and to identify whether the effect varies between different groups within the population and by type of insulation.
Design
A quasi-experimental retrospective cohort study using linked datasets to evaluate a national intervention programme.
Participants
994 317 residents of 204 405 houses who received an insulation subsidy through the Energy Efficiency and Conservation Authority Warm-up New Zealand: Heat Smart retrofit programme between July 2009 and June 2014.
Main outcome measure
A difference-in-difference approach was used to compare the change in hospital admissions of the study population post-insulation with the change in hospital admissions of the control population that did not receive the intervention over the same two timeframes. Relative rate ratios were used to compare the two groups.
Results
234 873 hospital admissions occurred during the study period. Hospital admission rates after the intervention increased in the intervention and control groups for all population categories and conditions with the exception of acute hospital admissions among Pacific Peoples (rate ratio 0.94, 95% confidence interval 0.90 to 0.98), asthma (0.92, 0.86 to 0.99), cardiovascular disease (0.90, 0.88 to 0.93), and ischaemic heart disease for adults older than 65 years (0.79, 0.74 to 0.84). Post-intervention increases were, however, significantly lower (11%) in the intervention group compared with the control group (relative rate ratio 0.89, 95% confidence interval 0.88 to 0.90), representing 9.26 (95% confidence interval 9.05 to 9.47) fewer hospital admissions per 1000 in the intervention population. Effects were more pronounced for respiratory disease (0.85, 0.81 to 0.90), asthma in all age groups (0.80, 0.70 to 0.90), and ischaemic heart disease in those older than 65 years (0.75, 0.66 to 0.83).
Conclusion
This study showed that a national home insulation intervention was associated with reduced hospital admissions, supporting previous research, which found an improvement in self-reported health.
This article describes an approach to evaluating a community-based public health intervention that considers the social systems in which the initiative is being implemented to be complex. The evaluation case example provides a unique opportunity to operationalize and test these methods, while extending their more frequent use within other fields to the field of public health.
Legionellosis, notably Legionnaires’ disease, is recognized globally and in New Zealand (Aotearoa) as a major cause of community-acquired pneumonia. We analyzed the temporal, geographic, and demographic epidemiology and microbiology of Legionnaires’ disease in New Zealand by using notification and laboratory-based surveillance data for 2000‒2020. We used Poisson regression models to estimate incidence rate ratios and 95% CIs to compare demographic and organism trends over 2 time periods (2000–2009 and 2010–2020). The mean annual incidence rate increased from 1.6 cases/100,000 population for 2000–2009 to 3.9 cases/100,000 population for 2010–2020. This increase corresponded with a change in diagnostic testing from predominantly serology with some culture to almost entirely molecular methods using PCR. There was also a marked shift in the identified dominant causative organism, from
Legionella pneumophila
to
L. longbeachae
. Surveillance for legionellosis could be further enhanced by greater use of molecular typing of isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.