We report on an ambitious project in the field of automation, applied to bound and free abrasive processing of precision and ultra-precision surfaces, with potentially far-reaching consequences. This involves two main aspects:- directly processing surfaces using industrial robots, and combining robots with Zeeko CNC polishing machines to automate operations that are currently manual. These form steps towards our ultimate vision of the Integrated Manufacturing Cell for bespoke optics rather than mass-produced, and manufacture of other precision surfaces including prosthetic joint implants. Projects such as the European Extremely Large Telescope provide a relevant case study, where significant numbers of high-value bespoke optics are required.
We report on the first-ever demonstration of grinding and polishing full-size, off-axis aspheric, mirror segments as prototypes for an extremely large telescope, processed entirely in the final hexagonal shape. We first describe the overall strategy for controlling form and mid spatial frequencies, at levels in the vicinity of <10nm RMS surface. This relies first on direct CNC grinding of the base-form of these 1.4m segments, using the Cranfield BoX TM machine. The segments are then mounted on a custom designed (Optic Glyndwr Optoelectronic Engineering Group) three segment hydraulic support, and CNC polished on a Zeeko IRP 1600 machine using a variety of custom tooling. We overview the fullaperture and sub-aperture metrology techniques used to close the process-loop and certify quality, all of which operate with the segment in-situ on the IRP1600. We then focus on the pristine edge-definition achieved by the combination of tool-lift and smoothing operations; results never previously demonstrated on full-size pre-cut hexagonal segments. Finally, the paper discusses the feasibility of scaling the process to deliver 931 segments in seven years, as required for the E-ELT project.
This paper addresses two challenges in establishing a new process chain for polishing hexagonal segments for extremely large telescopes:-i) control of edge and corner profiles in small-tool polishing of hexagons, and ii) achieving the required smoothness of the bulk aspheric form. We briefly describe the performance of a CNC-grinding process used to create the off-axis asphere, which established the input-quality for subsequent processing. We then summarize processes for smoothing ground mid-spatials and pre-and corrective polishing using Zeeko CNC machines. The impact of two cases is considered; i) all processing stages are performed after the segment is cut hexagonal, and ii) final rectification of a hexagon after cutting from an aspherised roundel, as an alternative to ionfiguring. We then report on experimental results on witness samples demonstrating edges and corners close to the E-ELT segment specification, and results on a full-aperture spherical segment showing excellent surface smoothness.
This paper describes the application of loose-abrasive processes to the manufacture of 1.4 meter, off-axis aspheric, hexagonal mirror-segments. These are prototypes for the 39 m European Extremely Large Telescope (E-ELT). The application of active forces to correct the overall form of segments in the telescope, means that the overall form-accuracy achieved in polishing can be less critical than for a non-active mirror. However, it is a requirement that the base-radii and conic constants of mirror-segments are very closely matched, so that the combined image is not degraded. This means that abrasive processes have to operate with respect to anabsoluterather thanrelativedatum. Furthermore, there are stringent requirements on mid-spatial frequency defects on segment surfaces, and on edge-roll. These control stray-light, and ultimately detectability of faint astronomical targets. We describe the CNC abrasive techniques we have developed in response. We then demonstrate the success of the approach, which represents the first time ever that segments have been processed entirely in the hexagonal shape:- a milestone in loose-abrasive processing. Finally, we address up-scale for the unprecedented number of segments required for the E-ELT build-phase.
After the formal acceptance of our fabrication of E-ELT segments, we aim to further accelerate the mass production by introducing an intermediate grolishing procedure using industrial robots, reducing the total process time by this much faster and parallel link. In this paper, we have presented research outputs on tool design, tool path generation, study of mismatch between rigid, semi-rigid tool and aspheric surface. It is indicated that the generation of mid-spatial frequency is proportional to the grit size and misfit between work piece and tool surfaces. Using a Non-Newtonian material tool with a spindle speed of 30 rpm has successfully reduce the mid-spatial error. The optimization of process parameters involve the study the combination effects of the above factors. These optimized parameters will result in a lookup table for reference of given input surface quality. Future work may include the higher spindle speed for grolishing with nonNewtonian tool looking for potential applications regarding to form correction, higher removal rate and edge control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.