As society tackles climate change adaptation and planning, community and regional managers are turning to science for answers. The role of water, and thus hydrologists, is central to many pressing questions.
Faced with concerns about water resource availability and quality degradation, society needs information on hydrologic processes at the catchment scale and smaller; although the community has significantly improved its understanding of such processes, there is a need for a new and integrative foundation of knowledge. Hydrology must not only reach beyond disciplinary boundaries but also forge broad connections with natural and social sciences to make useful water cycle predictions at regional and global scales.
[1] Groundwater can play an important role in water-supply emergency planning. A framework is presented for assessing the hydraulic impacts and associated costs of using groundwater as a backup supply when imported-water deliveries are disrupted, and for quantifying the emergency benefits of groundwater management strategies that enable better response to such disruptions. Response functions are derived, which relate additional groundwater pumpage during water-supply emergencies to impacts such as increased pumping costs, subsidence, and seawater intrusion. Monte Carlo analysis is employed to estimate the incremental costs of using groundwater as a backup supply. The emergency benefits of alternative groundwater management strategies are computed for different expected durations of imported water disruption, percentages of imported water replaced by groundwater, and threshold drawdowns for subsidence impacts. The methodology is applied to the coastal Los Angeles Basin. For this case study, emergency benefits of artificial recharge strategies are dominated by reduction of potential subsidence costs. The variance of the results also is primarily due to subsidence effects. Incorporation of probability distributions reflecting a larger expected use of groundwater during the imported-water disruption results in higher estimated emergency benefits of artificial recharge strategies. The framework presented for quantifying incremental costs and economic benefits of using groundwater as a backup supply could be applied to a broad range of water emergency planning decisions.Citation: Reichard, E. G., Z. Li, and C. Hermans (2010), Emergency use of groundwater as a backup supply: Quantifying hydraulic impacts and economic benefits, Water Resour. Res., 46, W09524,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.