This review presents the current state of the art regarding multiparametric magnetic resonance (MR) imaging of prostate cancer. Technical requirements and clinical indications for the use of multiparametric MR imaging in detection, localization, characterization, staging, biopsy guidance, and active surveillance of prostate cancer are discussed. Although reported accuracies of the separate and combined multiparametric MR imaging techniques vary for diverse clinical prostate cancer indications, multiparametric MR imaging of the prostate has shown promising results and may be of additional value in prostate cancer localization and local staging. Consensus on which technical approaches (field strengths, sequences, use of an endorectal coil) and combination of multiparametric MR imaging techniques should be used for specific clinical indications remains a challenge. Because guidelines are currently lacking, suggestions for a general minimal protocol for multiparametric MR imaging of the prostate based on the literature and the authors' experience are presented. Computer programs that allow evaluation of the various components of a multiparametric MR imaging examination in one view should be developed. In this way, an integrated interpretation of anatomic and functional MR imaging techniques in a multiparametric MR imaging examination is possible. Education and experience of specialist radiologists are essential for correct interpretation of multiparametric prostate MR imaging findings. Supportive techniques, such as computer-aided diagnosis are needed to obtain a fast, cost-effective, easy, and more reproducible prostate cancer diagnosis out of more and more complex multiparametric MR imaging data.
Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/.
Multimodal magnetic resonance imaging is an effective technique to localize prostate cancer. Magnetic resonance imaging guided biopsy of tumor suspicious regions is an accurate method to detect clinically significant prostate cancer in men with repeat negative biopsies and increased prostate specific antigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.