Life‐history theory concerns the trade‐offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life‐history trade‐offs, but the details remain obscure. As life‐history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life‐history trade‐offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life‐history information is available, cannot generally be performed without compromising the aims of the studies that generated the life‐history data. There is a need therefore for novel non‐invasive measurements of multi‐tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life‐history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life‐history trade‐offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life‐history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade‐offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other.
Summary 1.To estimate the impact of urbanization on wild animals, it is important to know how different species, populations and/or individuals deal with and respond to environmental stress. Are more urbanized species adapted to their environment, or do individuals acclimatize over the course of their life? Alternatively, do they simply cope at the expense of other functions? These are three key processes that I will address using two important physiological responses as case traits, namely oxidative stress and inflammation, -which are known to be under genetic control as well as showing great plasticity. 2. Oxidative stress is a state of more reactive oxidants than antioxidants, which may cause tissue damage linked to disease and senescence. Inflammation, on the other hand, is the response of vascular tissues to harmful stimuli. However, under progressive stimuli, inflammation may also cause tissue destruction and pathology. 3. Although patterns and strengths of effects are not always clear cut, the often interconnected oxidative stress and inflammation have the potential to be severely affected by urban stressors, thereby mechanistically linking ecology to fitness. Here I discuss five major urban stressors: chemical, noise and artificial night light pollution, disease and diet, and how their individual and combinatory effects may affect these two physiological responses. 4. To start to disentangle whether physiological responses are a question of evolving, acclimatizing or coping with the urban environment, population genetics along with regulatory mechanisms of gene expression will shed light on the 'costs' of urban life and help to understand why some species or genotypes thrive, while others are absent, in urban areas. Single nucleotide polymorphism (SNP) has been successful for explaining local adaptation and tolerance towards acute toxic substances. However, for multiple stressors acting in concert, at low chronic exposure, investigations of epigenetic mechanisms regulating gene expression may be more illuminating. 5. Here I review the pathways by which genetic and epigenetic mechanisms can affect oxidative stress and inflammatory responses in urban environments, thereby affecting overall fitness. By doing so, I identify the major outstanding gaps of knowledge in the interfaces between ecology, toxicology, evolutionary and molecular biology to inform future studies of urban wildlife.
Measures of oxidative stress in animals may be useful biomarkers of environmental stressors, such as anthropogenic pollution. In birds, studies of oxidative stress have focused on dietary antioxidants, primarily carotenoids, which are interesting due to their multiple physiological and pigmentary functions but therefore also unspecifically related to oxidative stress. A useful complementary biomarker may be the glutathione system, commonly used in human medicine, but rarely applied to wild, terrestrial vertebrates. In this study of urban versus rural adult and nestling great tits Parus major, we investigated both the carotenoid-based yellow plumage (by reflectance spectrometry) and the plasma levels of glutathione, the latter measured as total glutathione (tGSH) and as the ratio between oxidized and reduced glutathione (GSSG:GSH), respectively. We found that urban adults had higher current oxidative stress (GSSG:GSH) and paler yellow plumage compared to rural adults, suggesting elevated stress in the urban environment. Total glutathione levels (tGSH), however, which may indicate long-term up-regulation of the GSH reservoir, did not differ between the environments.Nestlings did not show any consistent pattern between environments in either tGSH or GSSG:GSH and, among individuals, glutathione levels were uncorrelated with carotenoid coloration. The results thus suggest some population-level correspondence between the two stress biomarkers in adult birds, but more work is obviously needed to understand how the two antioxidant systems interact in different individuals and in response to different environmental disturbances.
Under chronic stress, carotenoid-based colouration has often been shown to fade. However, the ecological and physiological mechanisms that govern colouration still remain largely unknown. Colour changes may be directly induced by the stressor (for example through reduced carotenoid intake) or due to the activation of the physiological stress response (PSR, e.g. due to increased blood corticosterone concentrations). Here, we tested whether blood corticosterone concentration affected carotenoid-based colouration, and whether a trade-off between colouration and PSR existed. Using the common lizard (Lacerta vivipara), we correlatively and experimentally showed that elevated blood corticosterone levels are associated with increased redness of the lizard's belly. In this study, the effects of corticosterone did not depend on carotenoid ingestion, indicating the absence of a trade-off between colouration and PSR for carotenoids. While carotenoid ingestion increased blood carotenoid concentration, colouration was not modified. This suggests that carotenoid-based colouration of common lizards is not severely limited by dietary carotenoid intake. Together with earlier studies, these findings suggest that the common lizard's carotenoid-based colouration may be a composite trait, consisting of fixed (e.g. genetic) and environmentally elements, the latter reflecting the lizard's PSR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.