Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons in the arcuate nucleus, which is accessible to peripheral hormones. Peptide YY(3-36) (PYY(3-36)), a Y2R agonist, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal. Here we show that peripheral injection of PYY(3-36) in rats inhibits food intake and reduces weight gain. PYY(3-36) also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY(3-36) increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY(3-36) inhibits food intake. PYY(3-36) also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons. In humans, infusion of normal postprandial concentrations of PYY(3-36) significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY(3-36) may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.
Ghrelin, a circulating growth hormone-releasing peptide derived from the stomach, stimulates food intake. The lowest systemically effective orexigenic dose of ghrelin was investigated and the resulting plasma ghrelin concentration was compared with that during fasting. The lowest dose of ghrelin that produced a significant stimulation of feeding after intraperitoneal injection was 1 nmol. The plasma ghrelin concentration after intraperitoneal injection of 1 nmol of ghrelin (2.83 ؎ 0.13 pmol/ml at 60 min postinjection) was not significantly different from that occurring after a 24-h fast (2.79 ؎ 0.32 pmol/ml). After microinjection into defined hypothalamic sites, ghrelin (30 pmol) stimulated food intake most markedly in the arcuate nucleus (Arc) (0 -1 h food intake, 427 ؎ 43% of control; P < 0.001 vs. control, P < 0.01 vs. all other nuclei), which is potentially accessible to the circulation. After chronic systemic or intracerebroventricular (ICV) administration of ghrelin for 7 days, cumulative food intake was increased (intraperitoneal ghrelin 13.6 ؎ 3.4 g greater than saline-treated, P < 0.01; ICV ghrelin 19.6 ؎ 5.5 g greater than saline-treated, P < 0.05). This was associated with excess weight gain (intraperitoneal ghrelin 21.7 ؎ 1.4 g vs. saline 10.6 ؎ 1.9 g, P < 0.001; ICV ghrelin 15.3 ؎ 4.3 g vs. saline 2.2 ؎ 3.8 g, P < 0.05) and adiposity. These data provide evidence that ghrelin is important in long-term control of food intake and body weight and that circulating ghrelin at fasting concentrations may stimulate food intake.
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that actsas an intracellular energy sensor maintaining the energy balance within the cell. The finding that leptin and adiponectin activate AMPK to alter metabolic pathways in muscle and liver provides direct evidence for this role in peripheral tissues. The hypothalamus is a key regulator of food intake and energy balance, coordinating body adiposity and nutritional state in response to peripheral hormones, such as leptin, peptide YY-(3-36), and ghrelin. To date the hormonal regulation of AMPK in the hypothalamus, or its potential role in the control of food intake, have not been reported. Here we demonstrate that counter-regulatory hormones involved in appetite control regulate AMPK activity and that pharmacological activation of AMPK in the hypothalamus increases food intake. In vivo administration of leptin, which leads to a reduction in food intake, decreases hypothalamic AMPK activity. By contrast, injection of ghrelin in vivo, which increases food intake, stimulates AMPK activity in the hypothalamus. Consistent with the effect of ghrelin, injection of 5-amino-4-imidazole carboxamide riboside, a pharmacological activator of AMPK, into either the third cerebral ventricle or directly into the paraventricular nucleus of the hypothalamus significantly increased food intake. These results suggest that AMPK is regulated in the hypothalamus by hormones which regulate food intake. Furthermore, direct pharmacological activation of AMPK in the hypothalamus is sufficient to increase food intake. These findings demonstrate that AMPK plays a role in the regulation of feeding and identify AMPK as a novel target for anti-obesity drugs. AMP-activated protein kinase (AMPK)1 plays a pivotal role in the regulation of energy metabolism and has been dubbed a cellular fuel gauge (1). AMPK is activated following an increase in the AMP:ATP ratio within the cell that occurs following a decrease in ATP levels (2, 3). Once activated, AMPK switches on ATP-generating (catabolic) pathways, e.g. fatty acid oxidation, and switches off ATP-using pathways (anabolic) pathways, e.g. fatty acid synthesis, allowing the cell to restore its energy balance (2, 3). In addition to acute effects on metabolism, AMPK has more long term effects, altering both gene (4) and protein expression (5, 6). Recent results have demonstrated activation of AMPK in the absence of changes in adenine nucleotide levels, indicating that there may be multiple pathways upstream of AMPK (7,8). The molecular mechanisms leading to activation of AMPK have not been fully elucidated, but it is clear that activation of AMPK requires phosphorylation of threonine 172 (Thr 172 ) within the activation loop segment of the catalytic (␣) subunit (9, 10). Very recently, LKB1, a protein kinase that is inactivated in a hereditary form of cancer termed Peutz-Jeghers syndrome, was shown to account for most of the AMPK kinase activity in cell extracts (11,12) raising the possibility that AMPK could l...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.