The use of vital wheat gluten in the baking industry and wheat flour mills aims to improve the rheological characteristics of flour considered unsuitable to obtain products such as sliced bread, French bread, high-fiber breads, and other products that require strong flours. To improve characteristics such as flour strength, dough mixing tolerance, and bread volume, vital wheat gluten is added to flour at levels that can vary from 2% to 10% (flour basis), with 5% being a commonly used dosage. However, the vital wheat gluten commercialized in the market has few quality specifications, especially related to the characteristics of the proteins that constitute it and are responsible for the formation of the viscoelastic gluten network. Information on protein quality is important, because variations are observed in the technological quality of vital wheat gluten obtained from different sources, which could be associated to damage caused to proteins during the obtainment process. Several tests, either physical-chemical analyses, or rheological tests, are carried out to establish gluten quality; however, they are sometimes time-consuming and costly. Although these tests give good answers to specify gluten quality, flour mills, and the baking industries require fast and simple tests to evaluate the uses and/or dosage of vital gluten addition to wheat flour. This review covers the concepts, uses, obtainment processes, and quality analysis of vital wheat gluten, as well as simple tests to help identify details about protein quality of commercial vital wheat gluten.
The use of bran and whole grain flour changes dough rheology and causes difficulties in manufacturing bakery products. The aim of this study was to analyse the influence of substituting refined wheat flour (WF) by wheat bran (WB; 5%, 10%, 20%, 30% and 40%) or whole grain wheat flour (WGWF; 10%, 20%, 30%, 40% and 50%) on dough rheological properties and pan bread quality characteristics. The addition of WB and WGWF increased water absorption and resistance to extension and decreased stability, extensibility and peak viscosity. Effects with WB were more pronounced. The presence of WB or WGWF increased crumb moisture content, firmness and hardness and decreased specific volume of pan bread. It is important to set new farinographic and extensographic standards when using WB and WGWF, allowing for a correct correlation between rheology and quality characteristics of bakery products, as the same standards used for WF are not valid.Whole flour dough rheology and bread quality M. Schmiele et al.
ResumoFilmes compostos de gelatina com amidos nativos de trigo, sorgo, batata e arroz foram produzidos separadamente e caracterizados quanto às propriedades físico-químicas (solubilidade em água e barreira ao vapor de água), físicas (espessura e opacidade) e mecânicas (resistência à tração e porcentagem de elongação na ruptura). As mesmas soluções filmogênicas foram preparadas e aplicadas em uvas Crimson para avaliação sensorial e acompanhamento da perda de massa durante 22 dias. As coberturas de sorgo e arroz foram as mais eficientes na extensão da vida útil (aumento de 10 dias). Entretanto, em relação aos atributos sensoriais, as uvas com cobertura de arroz não diferiram estatisticamente do controle, que apresentou as menores notas para os parâmetros de aparência global e intenção de compra. O filme de sorgo apresentou uma permeabilidade ao vapor de água de 5,40 g.mm.m -2 .d.kPa, resistência à tração de 85,89 MPa, elongação de 6,61% e opacidade de 40%. Mesmo não apresentando os melhores valores de caracterização, como filme, tornou-se a melhor opção como cobertura. Na avaliação sensorial, as uvas cobertas obtiveram aceitação igual ou maior que o controle quanto à aparência global, brilho, cor e intenção de compra. Na degustação das uvas, nenhuma das coberturas exerceu influência significativa no aroma, sabor e textura, sendo aceitas pelo consumidor em todos os parâmetros. Palavras-chave: filme comestível; cobertura comestível; amido nativo; gelatina; uva. AbstractFilms based on gelatin and native starches from wheat, sorghum, potato and rice were produced separately and characterized as to their physical-chemical (water solubility and water vapor permeability), physical (thickness and opacity) and mechanical (resistance to traction and percentage elongation at rupture) properties. The same solutions were prepared and applied to Crimson grapes for sensory evaluation and determination of weight loss over 22 days. The sorghum and rice coatings were the most efficient in their extending shelf life (a ten day increase). However, with respect to sensory attributes, the grapes with the rice coating did not show a statistical difference when compared to the control, which presented the lowest scores for global appearance purchase. The sorghum coating presented a water vapor permeability of 5.40 g.mm.m -2 .d.kPa, resistance to traction of 85.89 MPa, stretching of 6.61% and opacity of 40%. This film did not present the best characterization values, but was the best coating option. In the sensory evaluation, the coated grapes had a better or similar acceptance, when compared to the control, as to global appearance, shine, color and purchase. With respect to the eating characteristics of the grapes, none of the coatings significantly influenced aroma, flavor and texture, and were accepted by the consumers in every parameter.
a b s t r a c tThe Response Surface Methodology was employed to study the effects of adding different dietary fibre sources (wheat bran, resistant starch and locust bean gum), on process and quality parameters of pan bread. The experiments were carried out according to a 2 3 central composite rotational design (CCRD). With the experimental results or responses, the effect of each variable was calculated and the interactions between them were determined. For some parameters, such as proofing time, crust colour acceptance, crust appearance acceptance, taste acceptance and aroma acceptance, fibre addition did not present a significant effect. For the remaining parameters evaluated, it was possible to establish a mathematical model to explain the effect of the different dietary fibre sources. High-speed mixing time, crumb colour acceptance, crumb appearance acceptance and texture acceptance were influenced by the three different fibre sources studied. Wheat bran was the only fibre source that influenced specific volume and crumb chroma and hue angle. Wheat bran and locust bean gum (LBG) contributed to retain moisture in the crumb during all the storage period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.