Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution. We show that nodes, protein assembly precursors to the contractile ring, are discrete structural units with stoichiometric ratios and distinct distributions of constituent proteins. Anillin Mid1p, Fes/CIP4 homology-Bin/amphiphysin/ Rvs (F-BAR) Cdc15p, IQ motif containing GTPase-activating protein (IQGAP) Rng2p, and formin Cdc12p form the base of the node that anchors the ends of myosin II tails to the plasma membrane, with myosin II heads extending into the cytoplasm. This general node organization persists in the contractile ring where nodes move bidirectionally during constriction. We observed the dynamics of the actin network during cytokinesis, starting with the extension of short actin strands from nodes, which sometimes connected neighboring nodes. Later in cytokinesis, a broad network of thick bundles coalesced into a tight ring around the equator of the cell. The actin ring was ∼125 nm wide and ∼125 nm thick. These observations establish the organization of the proteins in the functional units of a cytokinetic contractile ring.T he mechanism of cell division by a contractile ring of actin and myosin II appeared in the common ancestor of amoebas, fungi, and animals (1). Although much is known about the protein composition of contractile rings, relatively little is known about the 3D organization of these proteins. This information is required to formulate computer models and simulations to test ideas regarding the mechanisms of contractile ring function.Electron microscopy has shown actin filaments in contractile rings of animal cells (2, 3) and yeast cells (4,5). Myosin II concentrates in cleavage furrow (6) and is the main motor for constricting contractile rings (7,8). In animal cells, electron microscopy has revealed rods the size of myosin II minifilaments in contractile rings (2, 9), and structured-illumination fluorescence microscopy has shown that this myosin II is organized in bipolar assemblies (10). Contractile rings contain other structural and regulatory proteins, including anillin (11), IQ motif containing GTPase-activating proteins (IQGAP) (12), formins (13), alphaactinin (14), and Fes/CIP4 homology-Bin/amphiphysin/Rvs (F-BAR) proteins (15), but how these proteins are anchored to the plasma membrane or organized into functional complexes in animal cells is unknown.Our understanding of the cytokinetic apparatus is most advanced in fission yeast (16). Only in fission yeast do we know the concentrations of the major cytokinesis proteins (17) and the time course of events leading to cellular division (18,19). Molecularly explicit computer models can account for both the ...
SUMMARY Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown, since the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms we studied fission yeast protoplasts, where constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate.
Summary Cytokinesis in fission yeast cells depends on conventional myosin-II (Myo2) to assemble and constrict a contractile ring of actin filaments. Less is known about the functions of an unconventional myosin-II (Myp2) and a myosin-V (Myo51) that are also present in the contractile ring. Myo2 appears in cytokinetic nodes around the equator 10 min before spindle pole body separation (cell cycle time −10 min) independent of actin filaments, followed by Myo51 at time zero and Myp2 at time +20 min, both located between nodes and dependent on actin filaments. We investigated the contributions of these three myosins to cytokinesis using a severely disabled mutation of the essential myosin-II heavy chain gene (myo2-E1) and deletion mutations of the other myosin heavy chain genes. Cells with only Myo2 assemble contractile rings normally. Cells with either Myp2 or Myo51 alone can assemble nodes and actin filaments into contractile rings, but complete assembly later than normal. Both Myp2 and Myo2 contribute to constriction of fully assembled rings at rates 55% of normal in cells relying on Myp2 alone and 25% of normal in cells with Myo2 alone. Myo51 alone cannot constrict rings but increases the constriction rate by Myo2 in Δmyp2 cells or Myp2 in myo2-E1 cells. Three myosins function in a hierarchal, complementary manner to accomplish cytokinesis with Myo2 and Myo51 taking the lead during contractile ring assembly and Myp2 making the greatest contribution to constriction.
Epithelial morphogenesis requires cell movements and cell shape changes coordinated by modulation of the actin cytoskeleton. We identify a role for Echinoid (Ed), an immunoglobulin domain-containing cell-adhesion molecule, in the generation of a contractile actomyosin cable required for epithelial morphogenesis in both the Drosophila ovarian follicular epithelium and embryo. Analysis of ed mutant follicle cell clones indicates that the juxtaposition of wild-type and ed mutant cells is sufficient to trigger actomyosin cable formation. Moreover, in wild-type ovaries and embryos, specific epithelial domains lack detectable Ed, thus creating endogenous interfaces between cells with and without Ed; these interfaces display the same contractile characteristics as the ectopic Ed expression borders generated by ed mutant clones. In the ovary, such an interface lies between the two cell types of the dorsal appendage primordia. In the embryo, Ed is absent from the amnioserosa during dorsal closure, generating an Ed expression border with the lateral epidermis that coincides with the actomyosin cable present at this interface. In both cases, ed mutant epithelia exhibit loss of this contractile structure and subsequent defects in morphogenesis. We propose that local modulation of the cytoskeleton at Ed expression borders may represent a general mechanism for promoting epithelial morphogenesis.
The mechanics that govern the constriction of the contractile ring remain poorly understood yet are critical to understanding the forces that drive cytokinesis. We used laser ablation in fission yeast cells to unravel these mechanics focusing on the role of Cdc15p as a putative anchoring protein. Our work shows that the severed constricting contractile ring recoils to a finite point leaving a gap that can heal if less than ∼1 µm. Severed contractile rings in Cdc15p-depleted cells exhibit an exaggerated recoil, which suggests that the recoil is limited by the anchoring of the ring to the plasma membrane. Based on a physical model of the severed contractile ring, we propose that Cdc15p impacts the stiffness of the contractile ring more than the viscous drag.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.