Antiviral innate immunity relies on the recognition of microbial structures. One such structure is viral RNA that carries a triphosphate group on its 5' terminus (PPP-RNA). By an affinity proteomics approach with PPP-RNA as the 'bait', we found that the antiviral protein IFIT1 (interferon-induced protein with tetratricopeptide repeats 1) mediated binding of a larger protein complex containing other IFIT family members. IFIT1 bound PPP-RNA with nanomolar affinity and required the arginine at position 187 in a highly charged carboxy-terminal groove of the protein. In the absence of IFIT1, the growth and pathogenicity of viruses containing PPP-RNA was much greater. In contrast, IFIT proteins were dispensable for the clearance of pathogens that did not generate PPP-RNA. On the basis of this specificity and the great abundance of IFIT proteins after infection, we propose that the IFIT complex antagonizes viruses by sequestering specific viral nucleic acids.
To assess the role of the Janus kinase (Jak) family member Tyk2, we have generated Tyk2-/- mice. In contrast to other Jaks, where inactivation leads to a complete loss of the respective cytokine receptor signal, Tyk2-/- mice display reduced responses to IFNalpha/beta and IL-12 and a selective deficiency in Stat3 activation in these pathways. Unexpectedly, IFNgamma signaling is also impaired in Tyk2-/- mice. Tyk2-/- macrophages fail to produce nitric oxide upon lipopolysaccharide induction. Tyk2-/- mice are unable to clear vaccinia virus and show a reduced T cell response after LCMV challenge. These data imply a selective contribution of Tyk2 to the signals triggered by various biological stimuli and cytokine receptors.
Before they infect red blood cells and cause malaria, Plasmodium parasites undergo an obligate and clinically silent expansion phase in the liver that is supposedly undetected by the host. Here, we demonstrate the engagement of a type I interferon (IFN) response during Plasmodium replication in the liver. We identified Plasmodium RNA as a novel pathogen-associated molecular pattern (PAMP) capable of activating a type I IFN response via the cytosolic pattern recognition receptor Mda5. This response, initiated by liver-resident cells through the adaptor molecule for cytosolic RNA sensors, Mavs, and the transcription factors Irf3 and Irf7, is propagated by hepatocytes in an interferon-α/β receptor–dependent manner. This signaling pathway is critical for immune cell–mediated host resistance to liver-stage Plasmodium infection, which can be primed with other PAMPs, including hepatitis C virus RNA. Together, our results show that the liver has sensor mechanisms for Plasmodium that mediate a functional antiparasite response driven by type I IFN.
Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar1−/−), we demonstrate a remarkable protection against invasive Ca infections. We discover a mechanism whereby IFN-I signaling controls the recruitment of inflammatory myeloid cells, including Ly6Chi monocytes and neutrophils, to infected kidneys by driving expression of the chemokines CCL2 and KC. Within kidneys, monocytes differentiate into inflammatory DCs but fail to functionally mature in Ifnar1−/− mice, as demonstrated by the impaired upregulation of the key activation markers PDCA1 and iNOS. The increased activity of inflammatory monocytes and neutrophils results in hyper-inflammation and lethal kidney pathology. Pharmacological diminution of monocytes and neutrophils by treating mice with pioglitazone, a synthetic agonist of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ), strongly reduces renal immunopathology during Ca infection and improves mouse survival. Taken together, our data connect for the first time the sepsis-promoting functions of IFNs-I to the CCL2-mediated recruitment and the activation of inflammatory monocytes/DCs with high host-destructing potency. Moreover, our data demonstrate a therapeutic relevance of PPAR-γ agonists for microbial infectious diseases where inflammatory myeloid cells may contribute to fatal tissue damage.
True hyphal growth of Candida albicans can be induced by several environmental conditions and contributes significantly to the high virulence of this pathogenic fungus. The transcriptional network that governs hyphal morphogenesis is complex, depends on several regulators and is not completely understood. Recently, CaUME6, a homolog of the Saccharomyces cerevisiae UME6 gene, has been shown to be required for hyphal elongation. In the present study, the C. albicans ume6Delta strain showed a complete defect in hyphae formation under all the growth conditions tested. UME6 was repressed by the Nrg1-Tup1 repressor in yeast-form cells but NRG1 was not repressed by Ume6p under hyphal growth conditions. Wild-type UME6 expression depended on each hyphal regulator tested, and ectopic UME6 expression in efg1Delta, cph1Delta and ras1Delta cells rescued the hyphal defects of these mutants under some hyphal growth conditions. Thus, UME6 is a common downstream target of regulators promoting hyphal development. Ectopic UME6 expression promoted both germ tube formation and hyphal elongation. The expression of all hyphae-specific genes investigated depended on UME6 expression. A model for transcriptional regulation of hyphal development and the role of Ume6p is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.