A dual-weighted residual approach for goal-oriented adaptive finite elements for a class of optimal control problems for elliptic variational inequalities is studied. The development is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Also, a priori bounds for C-stationary points and associated multipliers are derived. Details on the numerical realization of the adaptive concept are provided and a report on numerical tests including the critical cases of biactivity are presented.
Abstract. We are concerned with the numerical solution of distributed optimal control problems for second order elliptic variational inequalities by adaptive finite element methods. Both the continuous problem as well as its finite element approximations represent subclasses of Mathematical Programs with Equilibrium Constraints (MPECs) for which the optimality conditions are stated by means of stationarity concepts in function space [30] and in a discrete, finite dimensional setting [50] such as (ε-almost, almost) C-and S-stationarity. With regard to adaptive mesh refinement, in contrast to the work in [28] which adopts a goal oriented dual weighted approach, we consider standard residual-type a posteriori error estimators. The first main result states that for a sequence of discrete C-stationary points there exists a subsequence converging to an almost C-stationary point, provided the associated sequence of nested finite element spaces is limit dense in its continuous counterpart. As the second main result, we prove the reliability and efficiency of the residual-type a posteriori error estimators. Particular emphasis is put on the approximation of the reliability and efficiency related consistency errors by heuristically motivated computable quantities and on the approximation of the continuous active, strongly active, and inactive sets by their discrete counterparts. A detailed documentation of numerical results for two representative test examples illustrates the performance of the adaptive approach.
An adaptive finite element method is developed for a class of optimal control problems with elliptic variational inequality constraints and objective functionals defined on the space of continuous functions, necessitated by a point-tracking requirement with respect to the state variable. A suitable first order stationarity concept is derived for the problem class via a penalty technique. The dual-weighted residual approach for goal-oriented adaptive finite elements is applied and relies on the stationarity system. It yields primal residuals weighted by approximate dual quantities and vice versa as well as complementarity mismatch errors. A report on numerical tests, including the critical case of biactivity, completes this work.
Recent advances in the analytical as well as numerical treatment of classes of elliptic mathematical programs with equilibrium constraints (MPECs) in function space are discussed. In particular, stationarity conditions for control problems with point tracking objectives and subject to the obstacle problem as well as for optimization problems with variational inequality constraints and pointwise constraints on the gradient of the state are derived. For the former problem class including the case of L 2 -tracking-type objectives (rather than pointwise ones) a bundle-free solution method as well as adaptive finite element discretizations are introduced. Moreover, the analytical and numerical treatment of shape design problems subject to elliptic variational inequality constraints is highlighted. With respect
Motivated by applications in economics and engineering, we consider the optimal control of a variational inequality with point evaluations of the state variable in the objective. This problem class constitutes a specific mathematical program with complementarity constraints (MPCC). In our context, the problem is posed in an adequate function space and the variational inequality involves second order linear elliptic partial differential operators. The necessary functional analytic framework complicates the derivation of stationarity conditions whereas the non-convex and non-differentiable nature of the problem challenges the design of an efficient solution algorithm. In this paper, we present a penalization and smoothing technique to derive first order type conditions related to C-stationarity in the associated Sobolev space setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.