SUMMARY The transcriptional co-activators YAP and TAZ are key regulators of organ size and tissue homeostasis, and their dysregulation contributes to human cancer. Here we discover YAP/TAZ as bona fide downstream effectors of the alternative Wnt signaling pathway. Wnt5a/b and Wnt3a induce YAP/TAZ activation independent of canonical Wnt/β-catenin signaling. Mechanistically, we delineate the ‘alternative Wnt-YAP/TAZ signaling axis’ that consists of Wnt - FZD/ROR - Gα12/13 - Rho GTPases -Lats1/2 to promote YAP/TAZ activation and TEAD-mediated transcription. YAP/TAZ mediate the biological functions of alternative Wnt signaling including gene expression, osteogenic differentiation, cell migration, and antagonism of Wnt/β-catenin signaling. Together, our work establishes YAP/TAZ as critical mediators of alternative Wnt signaling.
Protein restricted, high carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Further, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderately protein restricted (PR) diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet, via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health, and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.
Abstract. The extracellular matrix (ECM) is an important regulator of the differentiated phenotype of mammary epithelial cells in culture. Despite the fact that ECM-degrading enzymes have been implicated in morphogenesis and tissue remodeling, there is little evidence for a direct role for such regulation in vivo. We generated transgenic mice that express autoactivated isoforms of the matrix metalloproteinase stromelysin-1, under the control of the whey acidic protein gene promoter, to examine the effect of inappropriate expression of this enzyme. Stromelysin-1 is implicated as the primary player in the loss of basement membrane and loss of function in the mammary gland during involution. The transgene was expressed at low levels in maramary glands of virgin female mice, leading to an unexpected phenotype: The primary ducts had supernumerary branches and showed precocious development of alveoli that expressed /3-casein at levels similar to that of an early-to midpregnant gland. Lactating glands showed high levels of transgene expression, with accumulation at the basement membrane, and a decrease in laminin and collagen IV, resulting in a loss of basement membrane integrity; this was accompanied by a dramatic alteration of alveolar morphology, with decreased size and shrunken lumina containing little/3-casein. During pregnancy, expression of endogenous whey acidic protein and r-casein was reduced in transgenic glands, confirming the observed dependence of milk protein transcription on ECM in mammary epithelial cells in culture. These data provide direct evidence that stromelysin-1 activity can be morphogenic for mammary epithelial cells, inducing hyperproliferation and differentiation in virgin animals, and that its lytic activity can, indeed, disrupt membrane integrity and reduce mammary-specific function. We conclude that the balance of ECM-degrading enzymes with their inhibitors, and the associated regulation of ECM structure, is crucial for tissue-specific gene expression and morphogenesis in vivo.T HE differentiated state is plastic, requiring continuous and active control for both its acquisition and its maintenance (Bisseli, 1981;Blau, 1992). In vertebrate cells in culture, there is an increasing body of evidence that the extracenular matrix (ECM) t plays a seminal role both in in-
During puberty, mouse mammary epithelial ducts invade the stromal mammary fat pad in a wave of branching morphogenesis to form a complex ductal tree. Using pharmacologic and genetic approaches, we find that mammary gland branching morphogenesis requires transient matrix metalloproteinase (MMP) activity for invasion and branch point selection. MMP-2, but not MMP-9, facilitates terminal end bud invasion by inhibiting epithelial cell apoptosis at the start of puberty. Unexpectedly, MMP-2 also represses precocious lateral branching during mid-puberty. In contrast, MMP-3 induces secondary and tertiary lateral branching of ducts during mid-puberty and early pregnancy. Nevertheless, the mammary gland is able to develop lactational competence in MMP mutant mice. Thus, specific MMPs refine the mammary branching pattern by distinct mechanisms during mammary gland branching morphogenesis.
Syndecan-1 is a cell-surface, heparan-sulphate proteoglycan (HSPG) predominantly expressed by epithelial cells. It binds specifically to many proteins, including oncoproteins. For example, it induces the assembly of a signalling complex between FGF ligands and their cognate receptors. But so far there has been no direct evidence that this proteoglycan contributes to tumorigenesis. Here we have examined the role of syndecan-1 (encoded by Sdc1) during mammary tumour formation in response to the ectopic expression of the proto-oncogene Wnt1. We crossed syndecan-1-deficient mice with transgenic mice that express Wnt1 in mammary gland (TgN(Wnt-1)1Hev; ref. 2). Ectopic Wnt-1 expression induces generalized mammary hyperplasia, followed by the development of solitary tumours (median time 22 weeks). We show that in Sdc1-/- mice, Wnt-1-induced hyperplasia in virgin mammary gland was reduced by 70%, indicating that the Wnt-1 signalling pathway was inhibited. Of the 39 tumours that developed in a test cohort of mice, only 1 evolved in the Sdc1-/- background. In addition, we show that soluble syndecan-1 ectodomain purified from mouse mammary epithelial cells stimulates the activity of a Wnt-1 homologue in a tissue culture assay. Our results provide both genetic and biochemical evidence that syndecan-1 can modulate Wnt signalling, and is critical for Wnt-1-induced tumorigenesis of the mouse mammary gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.