A combined approach for the extraction of antioxidants from Hibiscus sabdariffa and entrapment of the extract in zein nanoparticles is proposed. Different green extraction techniques were adopted: high‐pressure and ‐temperature extraction, ultrasound‐assisted extraction, and microwave‐assisted extraction, using an ethanol/water mixture as extracting solvent. The extracts were used for the preparation of zein nanoparticles by liquid antisolvent precipitation. The impacts of process variables were investigated using response surface modeling, demonstrating that the proposed strategy allows high extract encapsulation efficiency, good particle size control, and high particle stability.
Deoxynivalenol (DON) is a mycotoxin that affects the intestinal morphology of animals, impairing nutrient intake and growth. On the other hand, dietary supplementation with functional oligosaccharides as chito-oligosaccharides (COS) has shown positive effects on the intestinal health of piglets. Therefore, the objective of the present study was to evaluate the effect of low doses of COS in preventing DON-induced intestinal histological changes, using a swine jejunal explant technique. The intestinal explants were incubated at 37 °C in culture medium for 4 h and exposed to the following treatments: (a) control (only culture medium), (b) DON (10 µM), (c) 25COS (0.025 mg·mL−1 of COS); (d) 50COS (0.05 mg·mL−1 of COS); (e) 25COS plus DON (25COS + DON); (f) 50COS plus DON (50COS + DON). Explants exposed to COS presented intestinal morphology similar to control samples. DON induced a significant decrease in the histological score as a consequence of moderate to severe histological changes (apical necrosis, villi atrophy, and fusion) and a significant decrease in morphometric parameters (villi height, crypt depth, villi height:crypt depth ratio, and goblet cells density). The intestinal morphology of samples exposed to COS + DON remained similar to DON treatment. In conclusion, low levels of COS did not counteract DON-induced intestinal lesions.
Antibiotics have been widely used in piglet diets to promote growth performance and reduce diarrhea incidence. However, the resistance of pathogens to antibiotics and the risk of residues of antibiotics in animal products induced a growing interest in the use of alternatives to in-feed antibiotics. Chito-oligosaccharide (COS), a natural alkaline polymer of glucosamine is currently being tested as a substitute for in-feed antibiotics. In weaned piglets, COS has positive effects on promoting growth, which may be related to its action on intestinal morphology, immune ability and beneficial microbiota. However, previous studies shown variable results with effective doses ranging from 30 mg/kg to 5 g/kg. Therefore, the goal of this study was to test the hypothesis that the use of COS can be an alternative to in-feed antibiotics by improve the intestinal morphology of piglets, using the jejunal explant model. The intestinal explants were exposed for 4 h to following treatments: control - only culture media and culture media with COS in doses of 0.025 mg/ml, 0.05 mg/ml, 0.1 mg/ml and 0.15 mg/ml. After the incubation period the explants were processed for histological and morphometrical analysis. The histological changes were evaluated using an adapted histological score based on the intensity and severity of lesions. Mild histological changes were observed in jejunal explants exposed to different treatments; however, no significant difference in the histological score, villi height, crypt depth or villus : crypt ratio were observed between the COS-groups and the control. In addition, goblet cells density in intestinal explants exposed to COS remained statistically similar to control group. Our results indicate that COS exposure in levels ranging from 0.025 to 0.15 mg/ml induced no effect on intestinal morphology of pig's explants. The research will provide guidance on the low dosage of COS supplementation on weaning pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.