Abnormalities across different domains of neuropsychological functioning may constitute a risk factor for heavy drinking during adolescence and for developing alcohol use disorders later in life. However, the exact nature of such multi-domain risk profiles is unclear, and it is further unclear whether these risk profiles differ between genders. We combined longitudinal and cross-sectional analyses on the large IMAGEN sample (N ≈ 1000) to predict heavy drinking at age 19 from gray matter volume as well as from psychosocial data at age 14 and 19-for males and females separately. Heavy drinking was associated with reduced gray matter volume in 19-year-olds' bilateral ACC, MPFC, thalamus, middle, medial and superior OFC as well as left amygdala and anterior insula and right inferior OFC. Notably, this lower gray matter volume associated with heavy drinking was stronger in females than in males. In both genders, we observed that impulsivity and facets of novelty seeking at the age of 14 and 19, as well as hopelessness at the age of 14, are risk factors for heavy drinking at the age of 19. Stressful life events with internal (but not external) locus of control were associated with heavy drinking only at age 19. Personality and stress assessment in adolescents may help to better target counseling and prevention programs. This might reduce heavy drinking in adolescents and hence reduce the risk of early brain atrophy, especially in females. In turn, this could additionally reduce the risk of developing alcohol use disorders later in adulthood.
Most psychiatric disorders are associated with subtle alterations in brain function and are subject to large interindividual differences. Typically, the diagnosis of these disorders requires time-consuming behavioral assessments administered by a multidisciplinary team with extensive experience. While the application of Machine Learning classification methods (ML classifiers) to neuroimaging data has the potential to speed and simplify diagnosis of psychiatric disorders, the methods, assumptions, and analytical steps are currently opaque and not accessible to researchers and clinicians outside the field. In this paper, we describe potential classification pipelines for autism spectrum disorder, as an example of a psychiatric disorder. The analyses are based on resting-state fMRI data derived from a multisite data repository (ABIDE). We compare several popular ML classifiers such as support vector machines, neural networks, and regression approaches, among others. In a tutorial style, written to be equally accessible for researchers and clinicians, we explain the rationale of each classification approach, clarify the underlying assumptions, and discuss possible pitfalls and challenges. We also provide the data as well as the MATLAB code we used to achieve our results. We show that out-of-the-box ML classifiers can yield classification accuracies of about 60–70%. Finally, we discuss how classification accuracy can be further improved, and we mention methodological developments that are needed to pave the way for the use of ML classifiers in clinical practice.
While an increased impact of cues on decision-making has been associated with substance dependence, it is yet unclear whether this is also a phenotype of nonsubstance-related addictive disorders, such as gambling disorder (GD). To better understand the basic mechanisms of impaired decision-making in addiction, we investigated whether cue-induced changes in decision-making could distinguish GD from healthy control (HC) subjects. We expected that cue-induced changes in gamble acceptance and specifically in loss aversion would distinguish GD from HC subjects. Thirty GD subjects and 30 matched HC subjects completed a mixed gambles task where gambling and other emotional cues were shown in the background. We used machine learning to carve out the importance of cue dependency of decisionmaking and of loss aversion for distinguishing GD from HC subjects. Cross-validated classification yielded an area under the receiver operating curve (AUC-ROC) of 68.9% (p = .002). Applying the classifier to an independent sample yielded an AUC-ROC of 65.0% (p = .047). As expected, the classifier used cueinduced changes in gamble acceptance to distinguish GD from HC. Especially, increased gambling during the presentation of gambling cues characterized GD subjects. However, cue-induced changes in loss aversion were irrelevant for distinguishing GD from HC subjects. To our knowledge, this is the first study to investigate the classificatory power of addiction-relevant behavioral task parameters when distinguishing GD from HC subjects. The results indicate that cue-induced changes in decision-making are a characteristic feature of addictive disorders, independent of a substance of abuse KEYWORDS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.