Purpose To describe the pathology of AMD in eyes with geographic atrophy (GA) using confocal scanning laser ophthalmoscopy (SLO) blue light autofluorescence (BAF), and near-infrared (IR) AF and to correlate it with the histology and immunohistochemistry analysis at the margins of the GA lesion. Methods Enucleated, fixed eyes from seventeen donors with GA were imaged and analyzed by BAF-SLO, IRAF-SLO, and by fundus macroscopy (FM). Tissue from the margins of the GA lesions was cut and processed for resin embedding and histology or cryosectioning and fluorescence in the green and far-red channels, and immunohistochemistry to assess markers of inflammation. Isolated DNA from donors was genotyped for single nucleotide polymorphisms (SNPs) previously shown to be risk factors for the development and progression of AMD. Results Around the leading edge of the GA lesions we observed hypertrophic RPE cells with cytoplasm filled with granules fluorescent both in the far-red and green-red channels; abundant microglia and macrophage; deposition of complement factor H (CFH) in Bruch's membrane (BM) and increased membrane attack complex (MAC) on RPE cells. Conclusions Fluorescence imaging of cryosections of RPE cells around the leading edge of the GA lesions suggest that IRAF-SLO visualizes mostly melanin-related compounds. In addition, medium-size GA atrophy displayed the most significant changes in inflammation markers.
High levels of oxidative radicals generated by daily light exposure and high metabolic rate suggest that the antioxidant machinery of the retina and retinal pigment epithelium (RPE) is crucial for their survival. DJ-1 is a redox-sensitive protein that has been shown to have neuroprotective function in the brain in Parkinson's disease and other neurodegenerative diseases. Here, we analyzed the role of DJ-1 in the retina during oxidative stress and aging. We induced low-level oxidative stress in young (3-month-old) and old (15-month-old) C57BL/6J (WT) and DJ-1 knockout (KO) mice and evaluated effects in the RPE and retina. Absence of DJ-1 resulted in increased retinal dysfunction in response to low levels of oxidative stress. Our findings suggest that loss of DJ-1 affects the RPE antioxidant machinery, rendering it unable to combat and neutralize low-level oxidative stress, irrespective of age. Moreover, they draw a parallel to the retinal degeneration observed in AMD, where the occurrence of genetic variants may leave the retina and RPE unable to fight sustained, low-levels of oxidative stress.
Purpose The purpose of this study is to assess for histopathological changes within the retina and the choroid and determine the long-term sequelae of the SARS-CoV-2 infection. Methods Eyes from seven COVID-19-positive and six similar age-matched control donors with a negative test for SARS-CoV-2 were assessed. Globes were evaluated ex vivo with macroscopic, SLO and OCT imaging. Macula and peripheral regions were processed for Epon embedding and immunocytochemistry. Results Fundus analysis shows hemorrhagic spots and increased vitreous debris in several of the COVID-19 eyes compared to the controls. OCT-based measurements indicated an increased trend in retinal thickness in the COVID-19 eyes; however, the difference was not statistically significant. Histology of the retina showed presence of hemorrhages and central cystoid degeneration in several of the donors. Whole mount analysis of the retina labeled with markers showed changes in retinal microvasculature, increased inflammation, and gliosis in the COVID-19 eyes compared to the controls. The choroidal vasculature displayed localized changes in density and signs of increased inflammation in the COVID-19 samples. Conclusions In situ analysis of the retinal tissue suggests that there are severe subclinical abnormalities that could be detected in the COVID-19 eyes. This study provides a rationale for evaluating the ocular physiology of patients that have recovered from COVID-19 infections to further understand the long-term effects caused by this virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.