Context:Even though the majority of well-differentiated thyroid carcinoma (WDTC) is indolent, a number of cases display an aggressive behavior. Cumulative evidence suggests that the deregulation of DNA methylation has the potential to point out molecular markers associated with worse prognosis.Objective:To identify a prognostic epigenetic signature in thyroid cancer.Design:Genome-wide DNA methylation assays (450k platform, Illumina) were performed in a cohort of 50 nonneoplastic thyroid tissues (NTs), 17 benign thyroid lesions (BTLs), and 74 thyroid carcinomas (60 papillary, 8 follicular, 2 Hürthle cell, 1 poorly differentiated, and 3 anaplastic). A prognostic classifier for WDTC was developed via diagonal linear discriminant analysis. The results were compared with The Cancer Genome Atlas (TCGA) database.Results:A specific epigenetic profile was detected according to each histological subtype. BTLs and follicular carcinomas showed a greater number of methylated CpG in comparison with NTs, whereas hypomethylation was predominant in papillary and undifferentiated carcinomas. A prognostic classifier based on 21 DNA methylation probes was able to predict poor outcome in patients with WDTC (sensitivity 63%, specificity 92% for internal data; sensitivity 64%, specificity 88% for TCGA data). High-risk score based on the classifier was considered an independent factor of poor outcome (Cox regression, P < 0.001).Conclusions:The methylation profile of thyroid lesions exhibited a specific signature according to the histological subtype. A meaningful algorithm composed of 21 probes was capable of predicting the recurrence in WDTC.
BackgroundPapillary thyroid carcinoma (PTC) is a common endocrine neoplasm with a recent increase in incidence in many countries. Although PTC has been explored by gene expression and DNA methylation studies, the regulatory mechanisms of the methylation on the gene expression was poorly clarified. In this study, DNA methylation profile (Illumina HumanMethylation 450K) of 41 PTC paired with non-neoplastic adjacent tissues (NT) was carried out to identify and contribute to the elucidation of the role of novel genic and intergenic regions beyond those described in the promoter and CpG islands (CGI). An integrative and cross-validation analysis were performed aiming to identify molecular drivers and pathways that are PTC-related.ResultsThe comparisons between PTC and NT revealed 4995 methylated probes (88% hypomethylated in PTC) and 1446 differentially expressed transcripts cross-validated by the The Cancer Genome Atlas data. The majority of these probes was found in non-promoters regions, distant from CGI and enriched by enhancers. The integrative analysis between gene expression and DNA methylation revealed 185 and 38 genes (mainly in the promoter and body regions, respectively) with negative and positive correlation, respectively. Genes showing negative correlation underlined FGF and retinoic acid signaling as critical canonical pathways disrupted by DNA methylation in PTC. BRAF mutation was detected in 68% (28 of 41) of the tumors, which presented a higher level of demethylation (95% hypomethylated probes) compared with BRAF wild-type tumors. A similar integrative analysis uncovered 40 of 254 differentially expressed genes, which are potentially regulated by DNA methylation in BRAFV600E-positive tumors. The methylation and expression pattern of six selected genes (ERBB3, FGF1, FGFR2, GABRB2, HMGA2, and RDH5) were confirmed as altered by pyrosequencing and RT-qPCR.ConclusionsDNA methylation loss in non-promoter, poor CGI and enhancer-enriched regions was a significant event in PTC, especially in tumors harboring BRAFV600E. In addition to the promoter region, gene body and 3’UTR methylation have also the potential to influence the gene expression levels (both, repressing and inducing). The integrative analysis revealed genes potentially regulated by DNA methylation pointing out potential drivers and biomarkers related to PTC development.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-017-0346-2) contains supplementary material, which is available to authorized users.
BackgroundDNA methylation in miRNA genes has been reported as a mechanism that may cause dysregulation of mature miRNAs and consequently impact the gene expression. This mechanism is largely unstudied in papillary thyroid carcinomas (PTC).MethodsTo identify differentially methylated miRNA-encoding genes, we performed global methylation analysis (Illumina 450 K), integrative analysis (TCGA database), data confirmation (pyrosequencing and RT-qPCR), and functional assays.ResultsMethylation analysis revealed 27 differentially methylated miRNA genes. The integrative analyses pointed out miR-21 and miR-146b as potentially regulated by methylation (hypomethylation and increased expression). DNA methylation and expression patterns of miR-21 and miR-146b were confirmed as altered, as well as seven of 452 mRNAs targets were down-expressed. The combined methylation and expression levels of miR-21 and miR-146b showed potential to discriminate malignant from benign lesions (91–96% sensitivity and 96–97% specificity). An increased expression of miR-146b due to methylation loss was detected in the TPC1 cell line. The miRNA mimic transfection highlighted putative target mRNAs.ConclusionsThe increased expression of miR-21 and miR-146b due to loss of DNA methylation in PTC resulted in the disruption of the transcription machinery and biological pathways. These miRNAs are potential diagnostic biomarkers, and these findings provide support for future development of targeted therapies.Electronic supplementary materialThe online version of this article (10.1186/s13148-018-0579-8) contains supplementary material, which is available to authorized users.
Background: The differential diagnosis of thyroid nodules using fine-needle aspiration biopsy (FNAB) is challenging due to the inherent limitation of the cytology tests. The use of molecular markers has potential to complement the FNAB-based diagnosis and avoid unnecessary surgeries. In this study, we aimed to identify DNA methylation biomarkers and to develop a diagnostic tool useful for thyroid lesions. Methods: Genome-wide DNA methylation profiles (Illumina 450k) of papillary (PTC= 60) and follicular (FTC= 10) thyroid cancers were compared with non-neoplastic tissue samples
Despite the low mortality rates, well-differentiated thyroid carcinomas (WDTC) frequently relapse. BRAF and TERT mutations have been extensively related to prognosis in thyroid cancer. In this study, the methylation levels of selected CpGs (5-cytosine-phosphate-guanine-3) comprising a classifier, previously reported by our group, were assessed in combination with BRAF and TERT mutations. We evaluated 121 WDTC, three poorly-differentiated/anaplastic thyroid carcinomas (PDTC/ATC), 22 benign thyroid lesions (BTL), and 13 non-neoplastic thyroid (NT) tissues. BRAF (V600E) and TERT promoter (C228T and C250T) mutations were tested by pyrosequencing and Sanger sequencing, respectively. Three CpGs mapped in PFKFB2, ATP6V0C, and CXXC5 were evaluated by bisulfite pyrosequencing. ATP6V0C hypermethylation and PFKFB2 hypomethylation were detected in poor-prognosis (PDTC/ATC and relapsed WDTC) compared with good-prognosis (no relapsed WDTC) and non-malignant cases (NT/BTL). CXXC5 was hypomethylated in both poor and good-prognosis cases. Shorter disease-free survival was observed in WDTC patients presenting lower PFKFB2 methylation levels (p = 0.004). No association was observed on comparing BRAF (60.7%) and TERT (3.4%) mutations and prognosis. Lower PFKFB2 methylation levels was an independent factor of high relapse risk (Hazard Ratio = 3.2; CI95% = 1.1–9.5). PFKFB2 promoter methylation analysis has potential applicability to better stratify WDTC patients according to the recurrence risk, independently of BRAF and TERT mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.