As brown dwarfs cool, a variety of species condense in their atmospheres, forming clouds. Iron and silicate clouds shape the emergent spectra of L dwarfs, but these clouds dissipate at the L/T transition. A variety of other condensates are expected to form in cooler T dwarf atmospheres. These include Cr, MnS, Na 2 S, ZnS, and KCl, but the opacity of these optically thinner clouds has not been included in previous atmosphere models. Here, we examine their effect on model T and Y dwarf atmospheres. The cloud structures and opacities are calculated using the Ackerman & Marley (2001) cloud model, which is coupled to an atmosphere model to produce atmospheric pressure-temperature profiles in radiative-convective equilibrium. We generate a suite of models between T eff = 400 and 1300 K, log g=4.0 and 5.5, and condensate sedimentation efficiencies from f sed =2 to 5. Model spectra are compared to two red T dwarfs, Ross 458C and UGPS 0722-05; models that include clouds are found to match observed spectra significantly better than cloudless models. The emergence of sulfide clouds in cool atmospheres, particularly Na 2 S, may be a more natural explanation for the "cloudy" spectra of these objects, rather than the re-emergence of silicate clouds that wane at the L-to-T transition. We find that sulfide clouds provide a mechanism to match the near-and mid-infrared colors of observed T dwarfs.Our results indicate that including the opacity of condensates in T dwarf atmospheres is necessary to accurately determine the physical characteristics of many of the observed objects.
Over a large range of equilibrium temperatures, clouds shape the transmission spectrum of hot Jupiter atmospheres, yet their composition remains unknown. Recent observations show that the Kepler lightcurves of some hot Jupiters are asymmetric: for the hottest planets, the lightcurve peaks before secondary eclipse, whereas for planets cooler than ∼1900 K, it peaks after secondary eclipse. We use the thermal structure from 3D global circulation models to determine the expected cloud distribution and Kepler lightcurves of hot Jupiters. We demonstrate that the change from an optical lightcurve dominated by thermal emission to one dominated by scattering (reflection) naturally explains the observed trend from negative to positive offset. For the cool planets the presence of an asymmetry in the Kepler light curve is a telltale sign of the cloud composition, because each cloud species can produce an offset only over a narrow range of effective temperatures. By comparing our models and the observations, we show that the cloud composition of hot Jupiters likely varies with equilibrium temperature. We suggest that a transition occurs between silicate and manganese sulfide clouds at a temperature near 1600 K, analogous to the L/T transition on brown dwarfs. The cold trapping of cloud species below the photosphere naturally produces such a transition and predicts similar transitions for other condensates, including TiO. We predict that most hot Jupiters should have cloudy nightsides, that partial cloudiness should be common at the limb, and that the dayside hot spot should often be cloud-free.
A key legacy of the recently launched TESS mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. JWST, although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as ARIEL require the discovery and confirmation of several hundred additional sub-Jovian size planets (R p < 10 R ⊕ ) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based ELTs will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al. (2015), we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of ∼ 300 high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds.
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter.
Ever since the discovery of the first exoplanet, astronomers have made steady progress towards finding and probing planets in the habitable zone of their host stars, where the conditions could be right for liquid water to form and life to sprawl. Results from the Kepler mission indicate that the occurrence rate of habitable-zone Earths and super-Earths may be as high as 5-20%. Despite this abundance, probing the conditions and atmospheric properties on any of these habitable-zone planets is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor and the likely presence of liquid water clouds in the atmosphere of the 8.6 M ⊕ habitable-zone planet K2-18b. With a 33 day orbit around a cool M3 dwarf, K2-18b receives virtually the same amount of total radiation from its host star (1441 ± 80 W/m 2 ) as the Earth receives from the Sun (1370 W/m 2 ), making it a good candidate to host liquid water clouds. In this study we observed eight transits using HST/WFC3 in order to achieve the necessary sensitivity to detect water vapor. While the thick gaseous envelope of K2-18b means that it is not a true Earth analogue, our observations demonstrate that low-mass habitable-zone planets with the right conditions for liquid water are accessible with state-of-the-art telescopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.