Governments around the world have agreed to end hunger and food insecurity and to improve global nutrition, largely through changes to agriculture and food systems. However, they are faced with a lot of uncertainty when making policy decisions, since any agricultural changes will influence social and biophysical systems, which could yield either positive or negative nutrition outcomes. We outline a holistic probability modeling approach with Bayesian Network (BN) models for nutritional impacts resulting from agricultural development policy. The approach includes the elicitation of expert knowledge for impact model development, including sensitivity analysis and value of information calculations. It aims at a generalizable methodology that can be applied in a wide range of contexts. To showcase this approach, we develop an impact model of Vision 2040, Uganda's development strategy, which, among other objectives, seeks to transform the country's agricultural landscape from traditional systems to large‐scale commercial agriculture. Model results suggest that Vision 2040 is likely to have negative outcomes for the rural livelihoods it intends to support; it may have no appreciable influence on household hunger but, by influencing preferences for and access to quality nutritional foods, may increase the prevalence of micronutrient deficiency. The results highlight the trade‐offs that must be negotiated when making decisions regarding agriculture for nutrition, and the capacity of BNs to make these trade‐offs explicit. The work illustrates the value of BNs for supporting evidence‐based agricultural development decisions.
Designing and implementing biodiversity-based value chains can be a complex undertaking, especially in places where outcomes are uncertain and risks of project failure and cost overruns are high. We used the Stochastic Impact Evaluation (SIE) approach to guide the Intergovernmental Authority on Development (IGAD) on viable investment options in honey value chains, which the agency considered implementing as an economic incentive for communities along the Kenya-Somalia border to conserve biodiversity. The SIE approach allows for holistic analysis of project cost, benefit, and risk variables, including those with uncertain and missing information. It also identifies areas that pose critical uncertainties in the project. We started by conducting a baseline survey in Witu and Awer in Lamu County, Kenya. The aim of the survey was to establish the current farm income from beekeeping as a baseline, against which the prospective impacts of intervention options could be measured. We then developed an intervention decision model that was populated with all cost, benefit and risk variables relevant to beekeeping. After receiving training in making quantitative estimates, four subject-matter experts expressed their uncertainty about the proposed variables in the model by specifying probability distributions for them. We then used Monte Carlo simulation to project decision outcomes. We also identified variables that projected decision outcomes were most sensitive to, and we determined the value of information for each variable. The variable with the highest information value to the decision-maker in Witu was the honey price. In Awer, no additional information on any of the variables would change the recommendation to invest in honey value chains in the region. The analysis demonstrates a novel and comprehensive approach to decision-making for different stakeholders in a project where decision outcomes are uncertain.
is a research assistant with ICRAF's Land Health Decisions Unit. She is part of the decisions team in Kenya that offers quantitative decision support to policy makers. Her work revolves around estimation of uncertainties, construction of probabilistic and participatory models and the calculation of value of information of uncertain variables.
PDF Titles in the World Agroforestry Centre (ICRAF) Working Paper series aim to disseminate interim results on research and practices, and stimulate feedback from the scientific community. Other publication series from the World Agroforestry Centre include: Technical Manuals, Occasional Papers and the Trees for Change Series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.