Several intracellular pathogens, such as Brucella abortus, display a biphasic infection process starting with a non-proliferative stage of unclear nature. Here, we study the cell cycle of B. abortus at the single-cell level, in culture and during infection of HeLa cells and macrophages. The localization of segregation and replication loci of the two bacterial chromosomes indicates that, immediately after being engulfed by host-cell endocytic vacuoles, most bacterial cells are newborn. These bacterial cells do not initiate DNA replication for the next 4 to 6 h, indicating a G1 arrest. Moreover, growth is completely stopped during that time, reflecting a global cell cycle block. Growth and DNA replication resume later, although bacteria still reside within endosomal-like compartments. We hypothesize that the predominance of G1-arrested bacteria in the infectious population, and the bacterial cell cycle arrest following internalization, may constitute a widespread strategy among intracellular pathogens to colonize new proliferation niches.
The large Mediator (L-Mediator) is a general coactivator of RNA polymerase II transcription and is formed by the reversible association of the small Mediator (S-Mediator) and the kinase-module-harboring Cdk8. It is not known how the kinase module association/dissociation is regulated. We describe the fission yeast Cdk11-L-type cyclin pombe (Lcp1) complex and show that its inactivation alters the global expression profile in a manner very similar to that of mutations of the kinase module. Cdk11 is broadly distributed onto chromatin and phosphorylates the Med27 and Med4 Mediator subunits on conserved residues. The association of the kinase module and the S-Mediator is strongly decreased by the inactivation of either Cdk11 or the mutation of its target residues on the Mediator. These results show that Cdk11-Lcp1 regulates the association of the kinase module and the S-Mediator to form the L-Mediator complex.
BackgroundBrucella abortus is the etiological agent of a worldwide zoonosis called brucellosis. This alpha-proteobacterium is dividing asymmetrically, and PdhS, an essential histidine kinase, was reported to be an old pole marker.ResultsWe were interested to identify functions that could be recruited to bacterial poles. The Brucella ORFeome, a collection of cloned predicted coding sequences, was placed in fusion with yellow fluorescent protein (YFP) coding sequence and screened for polar localizations in B. abortus. We report that AidB-YFP was systematically localized to the new poles and at constrictions sites in B. abortus, either in culture or inside infected HeLa cells or RAW264.7 macrophages. AidB is an acyl-CoA dehydrogenase (ACAD) homolog, similar to E. coli AidB, an enzyme putatively involved in destroying alkylating agents. Accordingly, a B. abortus aidB mutant is more sensitive than the wild-type strain to the lethality induced by methanesulphonic acid ethyl ester (EMS). The exposure to EMS led to a very low frequency of constriction events, suggesting that cell cycle is blocked during alkylation damage. The localization of AidB-YFP at the new poles and at constriction sites seems to be specific for this ACAD homolog since two other ACAD homologs fused to YFP did not show specific localization. The overexpression of aidB, but not the two other ACAD coding sequences, leads to multiple morphological defects.ConclusionsData reported here suggest that AidB is a marker of new poles and constriction sites, that could be considered as sites of preparation of new poles in the sibling cells originating from cell division. The possible role of AidB in the generation or the function of new poles needs further investigation.
This article, the first of a short series on diabetes, provides an overview of diabetes in children and young people looking at the prevalence, signs and symptoms, diagnosis and treatment, targets and the support needed in order to help meet these. School nurses can play an important role in supporting children and young people with diabetes and it is important that they have a good understanding of the condition and work together with paediatric diabetes specialist teams to improve outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.