In vivo (lung resistive and viscoelastic pressures and static elastance) and in vitro (tissue resistance, elastance, and hysteresivity) respiratory mechanics were analyzed 1 and 30 days after saline (control) or paraquat (P [10 and 25 mg/kg intraperitoneally]) injection in rats. Additionally, P10 and P25 were treated with methylprednisolone (2 mg/kg intravenously) at 1 or 6 hours after acute lung injury (ALI) induction. Collagen and elastic fibers were quantified. Lung resistive and viscoelastic pressures and static elastance were higher in P10 and P25 than in the control. Tissue elastance and resistance augmented from control to P10 (1 and 30 days) and P25. Hysteresivity increased in only P25. Methylprednisolone at 1 or 6 hours attenuated in vivo and in vitro mechanical changes in P25, whereas P10 parameters were similar to the control. Collagen increment was dose and time dependent. Elastic fibers increased in P25 and at 30 days in P10. Corticosteroid prevented collagen increment and avoided elastogenesis. In conclusion, methylprednisolone led to a complete maintenance of in vivo and in vitro respiratory mechanics in mild lesion, whereas it minimized the changes in tissue impedance and extracellular matrix in severe ALI. The beneficial effects of the early use of steroids in ALI remained unaltered at Day 30.
In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and DeltaP2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.