Background: GB001 is an oral antagonist of the prostaglandin D2 receptor that may inhibit recruitment and activation of airway eosinophils, reducing airway inflammation.Objective: To assess GB001 safety, efficacy and pharmacokinetics from a Phase 2 study and explore the association between type 2 biomarkers (fractional exhaled nitric oxide and blood eosinophils) and asthma control markers following GB001 administration. Methods:A randomized, placebo-controlled, double-blind study evaluating 36 patients with mild-to-moderate atopic asthma. Patients receiving fluticasone propionate ≤500 mcg/day or equivalent were randomized (2:1) to GB001 (30 mg) or placebo once daily for 28 days. Safety, pharmacokinetics, forced expiratory volume in 1 second, asthma control questionnaire and rescue medication use were assessed. Clinical outcomes were analysed post hoc by baseline fractional exhaled nitric oxide (<35 and ≥35 ppb) and blood eosinophil (<250 and ≥250 cells/µL) subgroups. Results: GB001 was well tolerated and rapidly absorbed with a 14.5-hour terminal half-life. Overall, GB001 demonstrated greater improvement relative to placebo in forced expiratory volume in 1 second at Day 28 (102 mL [95% CI: −110, 314]). Greater effects on forced expiratory volume in 1 second were observed in the high baseline fractional exhaled nitric oxide and blood eosinophil subgroups (207 mL [95% CI: −283, 698];133 mL [95% CI: −422, 687], respectively). These effects were observed as early as Day 2 (229 mL [95% CI: −170, 628]; 163 mL [95% CI: −223, 550] for the high baseline fractional exhaled nitric oxide and blood eosinophil subgroups, respectively) and were sustained through treatment completion. Conclusion and clinical relevance: GB001 was well tolerated, with the estimated half-life supporting once-daily (QD) dosing. GB001 may have a rapid and sustainedThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Immunoassays are commonly used to assess airway inflammation in sputum samples from chronic obstructive pulmonary disease (COPD) patients. However, assay performance and validation in this complex matrix is inconsistently reported. The aim of this study was to assess the suitability of various immunoassays for use with sputum samples, followed by use of validated immunoassays to evaluate biomarker levels in COPD patients. Assays were assessed for recombinant reference standard suitability, optimal sample dilution, standard recovery in the biological matrix and reproducibility. Validated assays were used to assess sputum supernatants in Cohort A (n = 30 COPD, n = 10 smokers, n = 10 healthy) and Cohort B (n = 81 COPD, n = 15 smokers, n = 26 healthy). Paired baseline and exacerbation samples from 14 COPD patients were assessed in cohort A, and associations with sputum cell counts and bacterial colonisation investigated in cohort B. 25/32 assays passed validation; the primary reason for validation failure was recombinant reference standard suitability and sample dilution effects. Interleukin (IL-)6 and IL-8 were significantly increased in COPD patients compared to healthy subjects and smokers for both cohorts. Tumour necrosis factor (TNF)α and IL-1β were higher in COPD compared to smokers using one immunoassay but not another, partly explained by different absolute recovery rates. IL-1β, IL-2, IL-4, IL-8, IL-17A, Granulocyte colony stimulating factor (G-CSF), Interferon (IFN-)γ, Interferon gamma induced protein (IP-)10, Macrophage inflammatory protein (MIP)-1α, MIP-1β and TNF-α levels correlated with sputum neutrophil percentage in COPD patients. IL-1β, IL-4, IL-8, G-CSF and IFN-γ levels were associated with Haemophilus influenzae colonisation in COPD patients. Current smokers had lower levels of IL-1β, IL-4, IL-8, G-CSF, IFN-γ, IP-10, Monocyte chemoattractant protein (MCP)-1, MIP-1α, MIP-1β and TNF-α. Validated immunoassays applied to sputum supernatants demonstrated differences between COPD patients and controls, the effects of current smoking and associations between Haemophilus influenzae colonisation and higher levels of selected cytokines. Immunoassay validation enabled inflammatory mediators associated with different COPD characteristics to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.