Gap junctions are clusters of transmembrane channels allowing a passive diffusion of ions and small molecules between adjacent cells. Connexin43, the main channel-forming protein expressed in ventricular myocytes, can associate with zonula occludens-1, a scaffolding protein linked to the actin cytoskeleton and to signal transduction molecules. The possible influence of Rho GTPases, major regulators of cellular junctions and of the actin cytoskeleton, in the modulation of gap junctional intercellular communication (GJIC) was examined. The activation of RhoA by cytoxic necrotizing factor 1 markedly enhanced GJIC, whereas its specific inhibition by the Clostridium botulinum C3 exoenzyme significantly reduced it. RhoA activity affects GJIC without major cellular redistribution of junctional plaques or changes in the Cx43 phosphorylation pattern. As these GTPases frequently act via the cortical cytoskeleton, the importance of F-actin in the modulation of GJIC was investigated by means of agents interfering with actin polymerization. Cytoskeleton stabilization by phalloidin slowed down the kinetics of channel rundown in the absence of ATP, whereas its disruption by cytochalasin D rapidly and markedly reduced GJIC despite ATP presence. Cytoskeleton stabilization by phalloidin markedly reduced the consequences of RhoA activation or inactivation. This mechanism appears to be the first described capable to both up-or down-regulate GJIC through RhoA activation or, conversely, inhibition. The inhibition of Rho downstream kinase effectors had no effect on GJIC. The present results provide further insight into the gating and regulation of junctional channels and identify a new downstream target for the small G-protein RhoA.
Background-Thrombin plays a role in mediating ischemic injury and cardiac arrhythmias, but the mechanisms involved are poorly understood. Because voltage-gated sodium channels (VGSCs) have not previously been considered, putative effects of thrombin on VGSC function were investigated in human isolated cardiomyocytes. Methods and Results-Sodium current (I Na ) was recorded by the whole-cell patch-clamp method. Thrombin increased peak I Na amplitude in an activity-dependent manner, from 1 to 100 U/mL, with an apparent EC 50 of 91Ϯ16 U/mL. When tested at 32 U/mL, thrombin-increased I Na was abolished by tetrodotoxin (50 mol/L). Thrombin effects on I Na were reversible and repeatable, and 100 U/mL doubled peak I Na amplitude. Thrombin (32 U/mL) shifted I Na activation to hyperpolarized potentials without affecting steady-state inactivation, producing unusually large increases in window current. Hirudin (320 U/mL) or haloenol lactone suicide substrate (10 mol/L) failed to significantly affect these effects of thrombin. In current-clamped cardiomyocytes, thrombin (32 U/mL) depolarized resting membrane potential by 10 mV. Conclusions-Facilitation of VGSC activation causing large increases in window current is a major mechanism by which thrombin may promote ischemic sodium loading and injury.
Recently, we reported indirect evidence that plasma membrane Ca2+-ATPase (PMCA) can mediate B-type Ca2+ channels of cardiac myocytes. In the present study, in order to bring more direct evidence, purified PMCA from human red blood cells (RBC) was reconstituted into giant azolectin liposomes amenable to the patch-clamp technique. Purified RBC PMCA was used because it is available pure in larger quantity than cardiac PMCA. The presence of B-type Ca2+ channels was first investigated in native membranes of human RBC. They were detected and share the characteristics of cardiac myocytes. They spontaneously appeared in scarce short bursts of activity, they were activated by chlorpromazine (CPZ) with an EC50 of 149 mmole/l or 1 mmole/l vanadate, and then switched off by 10 mmole/l eosin or dose-dependently blocked by 1-5 mmole/l ATP. Independent of membrane potential, the channel gating exhibited complex patterns of many conductance levels, with three most often observed conductance levels of 22, 47 and 80 pS. The activation by vanadate suggests that these channels could play a role in the influx of extracellular Ca2+ involved in the vanadate-induced Gardos effect. In PMCA-reconstituted proteoliposomes, nearly half of the ATPase activity was retained and clear "channel-like" openings of Ba2+- or Ca2+-conducting channels were detected. Channel activity could be spontaneously present, lasting the patch lifetime or, when previously quiescent, activity could be induced by application of 50 mmole/l CPZ only in presence of 25 U/ml calmodulin (CaM), or by application of 1 mmole/l vanadate alone. Eosin (10 mmole/l) and ATP (5 mmole/l) significantly reduced spontaneous activity. Channel gating characteristics were similar to those of RBC, with main conductance levels of 21, 40 and 72 pS. The lack of direct activation by CPZ alone might be attributed to a purification-induced modification or absence of unidentified regulatory component(s) of PMCA. Despite a few differences in results between RBC and reincorporated PMCA, most probably attributable to the decrease in ATPase activity following the procedure of reincorporation, the present experimental conditions appear to reveal a channel-mode of the PMCA that shares many similarities with the B-type Ca2+ channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.