Optical data links are the backbone of today's telecommunication infrastructure. The integration of electronic and optic components on one chip is one of the most attractive routes to further increase the system performance. Here, we present the fabrication of photodetectors based on CVD-grown graphene on silicon photonic waveguides. The devices operate bias-free in the Cband at 1550 nm and show an extrinsic −3 dB bandwidth of 41 GHz. We demonstrate that these detectors work at data rates up to 50 GBit/ s with excellent signal integrity.
Metal-halide perovskites are promising lasing materials for the realization of monolithically integrated laser sources, the key components of silicon photonic integrated circuits (PICs). Perovskites can be deposited from solution and require only low-temperature processing, leading to significant cost reduction and enabling new PIC architectures compared to state-of-the-art lasers realized through the costly and inefficient hybrid integration of III−V semiconductors. Until now, however, due to the chemical sensitivity of perovskites, no microfabrication process based on optical lithography (and, therefore, on existing semiconductor manufacturing infrastructure) has been established. Here, the first methylammonium lead iodide perovskite microdisc lasers monolithically integrated into silicon nitride PICs by such a top-down process are presented. The lasers show a record low lasing threshold of 4.7 μJcm–2 at room temperature for monolithically integrated lasers, which are complementary metal–oxide–semiconductor compatible and can be integrated in the back-end-of-line processes.
In recent years, the data traffic has grown exponentially and the forecasts indicate a huge market that could be addressed by communication infrastructure and service providers. However, the processing capacity, space, and energy consumption of the available technology is a serious bottleneck for the exploitation of these markets. Chip-integrated optical communication systems hold the promise of significantly improving these issues related to the current technology. At the moment, the answer to the question which material is best suited for ultrafast chip integrated communication systems is still open. In this manuscript we report on ultrafast graphene photodetectors with a bandwidth of more than 76 GHz well suitable for communication links faster than 100 GBit/s per channel. We extract an upper value of 7.2 ps for the timescale in which the bolometric photoresponse in graphene is generated. The photodetectors were fabricated on 6" silicon-on-insulator wafers in a semiconductor pilot line, demonstrating the scalable fabrication of high-performance graphene based devices.Optical communication in general and especially chip integration of optic and electronic components has been considered as a promising way to significantly increase the performance of datalinks in terms of capacity, energy consumption, and costs [1][2][3]. The current bottleneck that hinders the mass production of chip integrated electro-optic components like modulators and photodetectors is the lack of a material that is compatible to established processing technology of chips while giving high performance devices. The electronic and optic properties of graphene [4], the two dimensional allotrope of carbon, were studied extensively in the last years [5][6][7][8][9]. Moreover, competitive chipintegrated electro-optical devices like electro-optical modulators [10,11], efficient waveguide heaters [12] and ultrafast photodetectors [13][14][15][16] were fabricated using graphene as active material. The performance of graphene photodetectors on integrated silicon waveguides in terms of speed and sensitivity has improved significantly in the last years and the gap between the performance of graphene and competing technologies is vanishing [17][18][19][20][21]. The possible monolithic integration on various substrates that are not necessarily crystalline is a key merit that distinguishes graphene from Ge or III/V materials. The bandwidth reported for graphene photodetectors of up to 65 GHz [16] and sensitivity around 0.4 A/W without bias and 1 A/W with bias [22] underline the potential of graphene for chip integrated photodetectors. Besides an excellent device performance the integration in a large scale production environment is essential. However, the introduction of new materials into an existing fabrication process flow and the required adoption as well as development of entirely new process steps are among the most challenging tasks in the fabrication of integrated circuits. So far, graphene photodetectors on silicon waveguides were fabrica...
Metal-halide perovskites are a class of solution processed materials with remarkable optoelectronic properties such as high photoluminescence quantum yields and long carrier lifetimes, which makes them promising for a wide range of efficient photonic devices. In this work, we demonstrate the first successful integration of a perovskite laser onto a silicon nitride photonic chip. High throughput, low cost optical lithography is used, followed by indirect structuring of the perovskite waveguide. We embed methylammonium lead tri-iodide (MAPbI) in a pre-patterned race-track microresonator and couple the emitted light to an integrated photonic waveguide. We clearly observe the build-up of spectrally narrow lasing modes at room temperature upon a pump threshold fluence of 19.6 µJcm. Our results evidence the possibility of on-chip lasers based on metal-halide perovskites with industry relevance on a commercially available dielectric photonic platform, which is a step forward towards low-cost integrated photonic devices.
We present a new optical biosensing integration approach with multifunctional capabilities using plasmonic and photonic components on the same chip and a new methodology to design interferometric biosensors exhibiting record high sensitivity and enhanced resolution relying on a planar surface plasmon polariton (SPP) waveguide. First, we use this approach to demonstrate a proof of concept integrated plasmo-photonic liquid refractive index sensor based on a silicon nitride (Si 3 N 4 ) Mach− Zehnder Interferometer (MZI). A 70 μm long, gold metal stripe is incorporated in the sensing arm serving as the transducer element. A variable optical attenuator and a thermo-optic phase shifter are deployed in the Si 3 N 4 reference arm for performance optimization. The variable optical attenuator stage targets high extinction ratio of the resonance at the interferometer output by balancing the power between the two arms whereas the phase shifter is used to tune the MZI at the desired spectral window. Experimental results matched well with numerical simulations showing bulk sensitivity up to 1930 nm/RIU and a resonance extinction ratio of 37 dB. We also provide a theoretical analysis for correlating the sensitivity performance of the sensor with its free spectral range (FSR). Based on this analysis, we propose optimized sensor designs and show that, by engineering the free spectral range of the sensor in the range of 600 nm, sensitivity may be boosted up to 60000 nm/RIU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.