In skeletal muscle fibers, tropomodulin 1 (Tmod1) can be compensated for, structurally but not functionally, by Tmod3 and -4.
The balance of inhibitory to excitatory (I/E) synaptic inputs is thought to control information processing and behavioral output of the central nervous system. We sought to test the effects of the decreased or increased I/E ratio on visual circuit function and visually guided behavior in Xenopus tadpoles. We selectively decreased inhibitory synaptic transmission in optic tectal neurons by knocking down the γ2 subunit of the GABA(A) receptors (GABA(A)R) using antisense morpholino oligonucleotides or by expressing a peptide corresponding to an intracellular loop of the γ2 subunit, called ICL, which interferes with anchoring GABA(A)R at synapses. Recordings of miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory PSCs (mEPSCs) showed that these treatments decreased the frequency of mIPSCs compared with control tectal neurons without affecting mEPSC frequency, resulting in an ∼50% decrease in the ratio of I/E synaptic input. ICL expression and γ2-subunit knockdown also decreased the ratio of optic nerve-evoked synaptic I/E responses. We recorded visually evoked responses from optic tectal neurons, in which the synaptic I/E ratio was decreased. Decreasing the synaptic I/E ratio in tectal neurons increased the variance of first spike latency in response to full-field visual stimulation, increased recurrent activity in the tectal circuit, enlarged spatial receptive fields, and lengthened the temporal integration window. We used the benzodiazepine, diazepam (DZ), to increase inhibitory synaptic activity. DZ increased optic nerve-evoked inhibitory transmission but did not affect evoked excitatory currents, resulting in an increase in the I/E ratio of ∼30%. Increasing the I/E ratio with DZ decreased the variance of first spike latency, decreased spatial receptive field size, and lengthened temporal receptive fields. Sequential recordings of spikes and excitatory and inhibitory synaptic inputs to the same visual stimuli demonstrated that decreasing or increasing the I/E ratio disrupted input/output relations. We assessed the effect of an altered I/E ratio on a visually guided behavior that requires the optic tectum. Increasing and decreasing I/E in tectal neurons blocked the tectally mediated visual avoidance behavior. Because ICL expression, γ2-subunit knockdown, and DZ did not directly affect excitatory synaptic transmission, we interpret the results of our study as evidence that partially decreasing or increasing the ratio of I/E disrupts several measures of visual system information processing and visually guided behavior in an intact vertebrate.
Abstract-Tropomodulin (Tmod)1 caps the pointed ends of actin filaments in sarcomeres of striated muscle myofibrils and in the erythrocyte membrane skeleton. Targeted deletion of mouse Tmod1 leads to defects in cardiac development, fragility of primitive erythroid cells, and an absence of yolk sac vasculogenesis, followed by embryonic lethality at embryonic day 9.5. The Tmod1-null embryonic hearts do not undergo looping morphogenesis and the cardiomyocytes fail to assemble striated myofibrils with regulated F-actin lengths. To test whether embryonic lethality of Tmod1 nulls results from defects in cardiac myofibrillogenesis and development or from erythroid cell fragility and subsequent defects in yolk sac vasculogenesis, we expressed Tmod1 specifically in the myocardium of the Tmod1-null mice under the control of the ␣-myosin heavy chain promoter Tg(␣MHC-Tmod1). In contrast to Tmod1-null embryos, which fail to undergo cardiac looping and have defective yolk sac vasculogenesis, both cardiac and yolk sac morphology of Tmod1 Ϫ/ϪTg(␣MHC-Tmod1) embryos are normal at embryonic day 9.5. Tmod1 Ϫ/ϪTg(␣MHC-Tmod1) embryos develop into viable and fertile mice, indicating that expression of Tmod1 in the heart is sufficient to rescue the Tmod1-null embryonic defects. Thus, although loss of Tmod1 results in myriad defects and embryonic lethality, the Tmod1 Ϫ/Ϫ primary defect is in the myocardium. Moreover, Tmod1 is not required in erythrocytes for viability, nor do the Tmod1 Ϫ/Ϫ fragile primitive erythroid cells affect cardiac development, yolk sac vasculogenesis, or viability in the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.