We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ∼35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.
Energy processes and vibrations in biological macromolecules such as proteins ultimately dictate biological, chemical, and physical functions in living materials. These energetic vibrations in the ribbon-like motifs of proteins interact on self-similar structures and fractal-like objects over a range of length scales of the protein (a few angstroms to the size of the protein itself, a few nanometers). In fact, the fractal geometries of protein molecules create a complex network of vibrations; therefore, proteins represent an ideal material system to study the underlying mechanisms driving vibrational thermal transport in a dense, fractal network. However, experimental studies of thermal energy transport in proteins have been limited to dispersive protein suspensions, which limits the knowledge that can be extracted about how vibrational energy is transferred in a pure protein solid. We overcome this by synthesizing solid, water-insoluble protein films for thermal conductivity measurements via time-domain thermoreflectance. We measure the thermal conductivity of bovine serum albumin and myoglobin solid films over a range of temperatures from 77 to 296 K. These temperature trends indicate that anharmonic coupling of vibrations in the protein is contributing to thermal conductivity. This first-ever observation of anharmonic-like trends in the thermal conductivity of a fully dense protein forms the basis of validation of seminal theories of vibrational energy-transfer processes in fractal objects.
The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ∼2.2 nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.
The progressive build up of fission products inside different nuclear reactor components can lead to significant damage of the constituent materials. We demonstrate the use of time-domain thermoreflectance (TDTR), a nondestructive thermal measurement technique, to study the effects of radiation damage on material properties. We use TDTR to report on the thermal conductivity of optimized ZIRLO, a material used as fuel cladding in nuclear reactors. We find that the thermal conductivity of optimized ZIRLO is 10.7 6 1.8 W m À1 K À1 at room temperature. Furthermore, we find that the thermal conductivities of copperniobium nanostructured multilayers do not change with helium ion irradiation doses of 10 15 cm À2 and ion energy of 200 keV, demonstrating the potential of heterogeneous multilayer materials for radiation tolerant coatings. Finally, we compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Our results demonstrate that TDTR can be used to quantify depth dependent damage.
We employ the theory of topological phase transitions, of the Berezinskiĭ-Kosterlitz-Thouless (BKT) type, in order to investigate orientational ordering in four spatial dimensions that is characterized by a quaternion n−vector (i.e., n=4) order parameter. Due to the dimensionality of the quaternion n −vector order parameter, the development of orientational order for systems that exist in four spatial dimensions must be viewed within the context of ordering in restricted dimensions. At finite temperatures, despite the development of a well-defined amplitude of the n−vector order parameter within separate regions, ordered systems that exist in restricted dimensions are prevented from developing global orientational phase-coherence as a consequence of misorientational fluctuations throughout the system. In four dimensions, this gas of misorientational fluctuations takes the form of spontaneously generated topological point defects that belong to the third homotopy group. These topological point defects must become topologically ordered in order to obtain a ground state of aligned order parameters at zero Kelvin; we argue that this topological transition belongs to the BKT universality class. We use standard 'Metropolis' Monte Carlo simulations to estimate the thermodynamic response functions, susceptibility and heat capacity, in the vicinity of the transition towards the ground state of perfectly aligned order parameters in our four-dimensional quaternion n−vector ordered model system. On lowering the temperature below a critical value, we identify a transition that results from the minimization of misorientations in the scalar phase angles throughout the system. The thermodynamic response functions obtained by Monte Carlo simulations show characteristic behavior of a topological ordering phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.