The effects of mutation of key active-site residues (Arg-47, Tyr-51, in Bacillus megaterium flavocytochrome P450 BM3 were investigated. Kinetic studies on the oxidation of laurate and arachidonate showed that the side chain of Arg-47 contributes more significantly to stabilization of the fatty acid carboxylate than does that of Tyr-51 (kinetic parameters for oxidation of laurate : R47A mutant, K m 859 µM, k cat 3960 min −" ; Y51F mutant, K m 432 µM, k cat 6140 min −" ; wild-type, K m 288 µM, k cat 5140 min −" ). A slightly increased k cat for the Y51F-catalysed oxidation of laurate is probably due to decreased activation energy (∆G ‡ ) resulting from a smaller ∆G of substrate binding. The side chain of Phe-42 acts as a phenyl ' cap ' over the mouth of the substrate-binding channel. With mutant F42A, K m is massively increased and k cat is decreased for oxidation of both laurate (K m 2.08 mM, k cat 2450 min −" ) and arachidonate (K m 34.9 µM, k cat 14 620 min −" ; compared with values of 4.7 µM and 17 100 min −" respectively for wild-type). Amino acid Phe-87 is critical for efficient catalysis. Mutants F87G and F87Y not only exhibit increased K m and decreased k cat values for fatty acid
The Escherichia coli replication terminator protein (Tus) binds tightly and specifically to termination sites such as TerB in order to halt DNA replication. To better understand the process of Tus-TerB interaction, an assay based on surface plasmon resonance was developed to allow the determination of the equilibrium dissociation constant of the complex (K D ) and association and dissocation rate constants for the interaction between Tus and various DNA sequences, including TerB, single-stranded DNA, and two nonspecific sequences that had no relationship to TerB. The effects of factors such as the KCl concentration, the orientation and length of the DNA, and the presence of a single-stranded tail on the binding were also examined. The K D measured for the binding of wild type and His 6 -Tus to TerB was 0.5 nM in 250 mM KCl. Four variants of Tus containing single-residue mutations were assayed for binding to TerB and the nonspecific sequences. Three of these substitutions (K89A, R198A, and Q250A) increased K D by 200-300-fold, whereas the A173T substitution increased K D by 4000-fold. Only the R198A substitution had a significant effect on binding to the nonspecific sequences. The kinetic and thermodynamic data suggest a model for Tus binding to TerB which involves an ordered series of events that include structural changes in the protein.
Site-directed mutants of the phylogenetically conserved phenylalanine residue F393 were constructed in flavocytochrome P450 BM3 from Bacillus megaterium. The high degree of conservation of this residue in the P450 superfamily and its proximity to the heme (and its ligand Cys400) infers an essential role in P450 activity. Extensive kinetic and thermodynamic characterization of mutant enzymes F393A, F393H, and F393Y highlighted significant differences from wild-type P450 BM3. All enzymes expressed to high levels and contained their full complement of heme. While the reduction and subsequent treatment of the mutant P450s with carbon monoxide led to the formation of the characteristic P450 spectra in all cases, the absolute position of the Soret absorption varied across the series WT/F393Y (449 nm), F393H (445 nm), and F393A (444 nm). Steady-state turnover rates with both laurate and arachidonate showed the trend WT > F393Y >> F393H > F393A. Conversely, the trend in the pre-steady-state flavin-to-heme electron transfer was the reverse of the steady-state scenario, with rates varying F393A > F393H >> F393Y approximately wild-type. These data are consistent with the more positive substrate-free [-312 mV (F393A), -332 mV (F393H)] and substrate-bound [-151 mV (F393A), -176 mV (F393H)] reduction potentials of F393A and F393H heme domains, favoring the stabilization of the ferrous-form in the mutant P450s relative to wild-type. Elevation of the heme iron reduction potential in the F393A and F393H mutants facilitates faster electron transfer to the heme. This results in a decrease in the driving force for oxygen reduction by the ferrous heme iron, so explaining lower overall turnover of the mutant P450s. We postulate that the nature of the residue at position 393 is important in controlling the delicate equilibrium observed in P450s, whereby a tradeoff is established between the rate of heme reduction and the rate at which the ferrous heme can bind and, subsequently, reduce molecular oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.