Circulating hemocytes in the hemolymph represent the backbone of innate immunity in bivalves. Hemocytes are also found in the extrapallial fluid (EPF), the space delimited between the shell and the mantle, which is the site of shell biomineralization. This study investigated the transcriptome, proteome, and function of EPF and hemolymph in the hard clam Mercenaria mercenaria. Total and differential hemocyte counts were similar between EPF and hemolymph. Overexpressed genes in the EPF were found to have domains previously identified as being part of the “biomineralization toolkit” and involved in bivalve shell formation. Biomineralization related genes included chitin-metabolism genes, carbonic anhydrase, perlucin, and insoluble shell matrix protein genes. Overexpressed genes in the EPF encoded proteins present at higher abundances in the EPF proteome, specifically those related to shell formation such as carbonic anhydrase and insoluble shell matrix proteins. Genes coding for bicarbonate and ion transporters were also overexpressed, suggesting that EPF hemocytes are involved in regulating the availability of ions critical for biomineralization. Functional assays also showed that Ca2+ content of hemocytes in the EPF were significantly higher than those in hemolymph, supporting the idea that hemocytes serve as a source of Ca2+ during biomineralization. Overexpressed genes and proteins also contained domains such as C1q that have dual functions in biomineralization and immune response. The percent of phagocytic granulocytes was not significantly different between EPF and hemolymph. Together, these findings suggest that hemocytes in EPF play a central role in both biomineralization and immunity.
Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal transplant experiment, larvae transplanted from elevated pCO2 (~1400 ppm) to ambient pCO2 (~350 ppm) demonstrated significantly lower mortality and larger size post-transplant than oysters remaining under elevated pCO2 and had similar mortality compared to those remaining in ambient conditions. The recovery after transplantation to ambient conditions demonstrates the ability for larvae to rebound and suggests phenotypic plasticity and acclimation. Transcriptomic analysis supported this hypothesis as genes were differentially regulated under OA stress. Transcriptomic profiles of transplanted and non-transplanted larvae terminating in the same final pCO2 converged, further supporting the idea that acclimation underlies resilience. The functions of differentially expressed genes included cell differentiation, development, biomineralization, ion exchange, and immunity. Results suggest acclimation as a mode of resilience to OA. In addition, the identification of genes associated with resilience can serve as a valuable resource for the aquaculture industry, as these could enable marker-assisted selection of OA-resilient stocks.
The decorator worm Diopatra cuprea, a tube-forming marine polychaete common to intertidal and shallow subtidal waters, modifies habitats it occupies through microreef construction and algal gardening. While several studies have demonstrated that decorator worm tubes are hotspots of biogeochemical activity (i.e., nitrogen and sulfur cycling), it is still largely unclear whether the tube microbiome differs compositionally from the surrounding sediment and what distinct functional processes tube microbiomes may have. To address these unknowns, this study analyzed the bacterial communities of D. cuprea tubes and surrounding sediments using high-throughput 16S rRNA gene amplicon sequencing. Tubes and sediments were sampled at three sites along an anthropogenic stress gradient within the Newport River Estuary to also assess geographic variation of tube microbiomes and the possible influence of human disturbance. We found a clear distinction in the microbial community composition and diversity between tubes and surrounding sediment. Tube microbiomes were significantly enriched for the phyla Bacteriodetes, Actinobacteria, Verrucomicrobia, Deferribacteres, Latescibacteria, and Lentisphaerae. Chloroplast sequences of macroalgae and grass species were consistently abundant in tubes and nearly absent in surrounding sediment. Functional annotation of prokaryotic taxa (FAPROTAX)-based functional predictions suggested that tube microbiomes have higher potentials for aerobic chemoheterotrophy, sulfur compound respiration, nitrate reduction, methylotrophy, and hydrocarbon degradation than surrounding sediments. Tube microbiomes vary across sites, though dissimilarity is comparatively low compared to tube-to-sediment differences. Contrary to our hypothesis, the tubes at the most highly impacted site had the highest microbial diversity [i.e., amplicon sequence variant (ASV) richness and Shannon’s diversity], yet tubes from the medium impacted site actually had the lowest microbial diversity. Our findings show that D. cuprea tubes support a microbiome that is significantly distinct in composition and function from the surrounding sediment. Diopatra cuprea tubes appear to create unique microhabitats that facilitate numerous microbially-mediated biogeochemical processes in the marine benthic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.