During non-rapid eye movement (NREM) sleep (stage N3), when consciousness fades, cortico-cortical interactions are impaired while neurons are still active and reactive. Why is this? We compared cortico-cortical evoked-potentials recorded during wakefulness and NREM by means of time-frequency analysis and phase-locking measures in 8 epileptic patients undergoing intra-cerebral stimulations/recordings for clinical evaluation. We observed that, while during wakefulness electrical stimulation triggers a chain of deterministic phase-locked activations in its cortical targets, during NREM the same input induces a slow wave associated with an OFF-period (suppression of power>20Hz), possibly reflecting a neuronal down-state. Crucially, after the OFF-period, cortical activity resumes to wakefulness-like levels, but the deterministic effects of the initial input are lost, as indicated by a sharp drop of phase-locked activity. These findings suggest that the intrinsic tendency of cortical neurons to fall into a down-state after a transient activation (i.e. bistability) prevents the emergence of stable patterns of causal interactions among cortical areas during NREM. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions in which thalamo-cortical information integration and consciousness are impaired in spite of preserved neuronal activity.
Working together feels easier with some people than with others. We asked participants to perform a visual search task either alone or with a partner while simultaneously measuring each participant's EEG. Local phase synchronization and inter-brain phase synchronization were generally higher when subjects jointly attended to a visual search task than when they attended to the same task individually. Some participants searched the visual display more efficiently and made faster decisions when working as a team, whereas other dyads did not benefit from working together. These inter-team differences in behavioral performance gain in the visual search task were reliably associated with inter-team differences in local and inter-brain phase synchronization. Our results suggest that phase synchronization constitutes a neural correlate of social facilitation, and may help to explain why some teams perform better than others.
Working memory (WM) is crucial for intelligent cognitive functioning, and synchronization phenomena in the fronto-parietal network have been suggested as an underlying neural mechanism. In an attempt to provide causal evidence for this assumption, we applied transcranial alternating current stimulation (tACS) at theta frequency over fronto-parietal sites during a visuospatial match-to-sample (MtS) task. Depending on the stimulation protocol, i.e., in-phase, anti-phase or sham, we anticipated a differential impact of tACS on behavioral WM performance as well as on the EEG (electroencephalography) during resting state before and after stimulation. We hypothesized that in-phase tACS of the fronto-parietal theta network (stimulation frequency: 5 Hz; intensity: 1 mA peak-to-peak) would result in performance enhancement, whereas anti-phase tACS would cause performance impairment. Eighteen participants (nine female) received in-phase, anti-phase, and sham stimulation in balanced order. While being stimulated, subjects performed the MtS task, which varied in executive demand (two levels: low and high). EEG analysis of power peaks within the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequency bands was carried out. No significant differences were observed between in-phase and anti-phase stimulation regarding both behavioral and EEG measurements. Yet, with regard to the alpha frequency band, we observed a statistically significant drop of peak power from pre to post in the sham condition, whereas alpha power remained on a similar level in the actively stimulated conditions. Our results indicate a frequency-unspecific modulation of neuronal oscillations by tACS. However, the closer participants’ individual theta peak frequencies were to the stimulation frequency of 5 Hz after anti-phase tACS, the faster they responded in the MtS task. This effect did not reach statistical significance during in-phase tACS and was not present during sham. A lack of statistically significant behavioral results in the MtS task and frequency-unspecific effects on the electrophysiological level question the effectiveness of tACS in modulating cortical oscillations in a frequency-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.