ObjectiveIn this study, we determined whether Helicobacter pylori (H. pylori) infection dampens the efficacy of cancer immunotherapies.DesignUsing mouse models, we evaluated whether immune checkpoint inhibitors or vaccine-based immunotherapies are effective in reducing tumour volumes of H. pylori-infected mice. In humans, we evaluated the correlation between H. pylori seropositivity and the efficacy of the programmed cell death protein 1 (PD-1) blockade therapy in patients with non-small-cell lung cancer (NSCLC).ResultsIn mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumour volumes of non-infected mice undergoing anticytotoxic T-lymphocyte-associated protein 4 and/or programmed death ligand 1 or anti-cancer vaccine treatments were significantly smaller than those of infected mice. We observed a decreased number and activation status of tumour-specific CD8+ T cells in the tumours of infected mice treated with cancer immunotherapies independent of the gut microbiome composition. Additionally, by performing an in vitro co-culture assay, we observed that dendritic cells of infected mice promote lower tumour-specific CD8+ T cell proliferation. We performed retrospective human clinical studies in two independent cohorts. In the Dijon cohort, H. pylori seropositivity was found to be associated with a decreased NSCLC patient survival on anti-PD-1 therapy. The survival median for H. pylori seropositive patients was 6.7 months compared with 15.4 months for seronegative patients (p=0.001). Additionally, in the Montreal cohort, H. pylori seropositivity was found to be associated with an apparent decrease of NSCLC patient progression-free survival on anti-PD-1 therapy.ConclusionOur study unveils for the first time that the stomach microbiota affects the response to cancer immunotherapies and that H. pylori serology would be a powerful tool to personalize cancer immunotherapy treatment.
BackgroundPea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection.ResultsA collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted.ConclusionThe development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being developed will most probably allow for a more efficient selection in this species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1266-1) contains supplementary material, which is available to authorized users.
Background No study has evaluated the predictive and prognostic role of CD8 and PD-L1 coexpression in non–small-cell lung cancer (NSCLC). Methods We analyzed RNA sequencing and/or immunohistochemistry staining in NSCLC patients from The Cancer Genome Atlas ( n = 1016), and 34 metastatic NSCLC samples not treated by immunotherapy as prognostic cohorts. As predictive aspect of CD8 and PD-L1, we used 85 NSCLC patients treated with anti-PD-1. Two validation cohorts were used including 44 NSCLC patients treated with anti-PD-1 and an external cohort with different tumor types. Results In prognostic cohorts, high CD8A expression was associated with longer OS ( p = 0.02), while high CD274 mRNA was associated with poor prognosis ( p = 0.05). In predictive cohort, high CD8 expression and CD8A mRNA were associated with longer progression-free survival (PFS) ( p = 0.0002). There was no significant association between PD-L1 expression and PFS while high CD274 mRNA was associated with longer PFS ( p = 0.009). A combination of CD8A and CD274 was highly predictive of outcome. These results were confirmed in the validation cohorts. This two-genes signature demonstrated similar results compared to gold standard signatures. Conclusion CD8 represents both a prognostic and predictive factor of outcomes, while PD-L1 share different prognostic and predictive roles.
Nivolumab, a monoclonal antibody targeting PD-1, is currently approved for metastatic non-small cell lung cancer (mNSCLC) treatment after failure of first-line chemotherapy. However, only a quarter of patients benefit from this therapy with objective clinical response. In this context, there is an unmet need for improved understanding of resistance mechanisms. Thus, we studied a prospective cohort of mNSCLC (n = 61) treated in second or third-line with nivolumab. We analyzed various blood myeloid and lymphoid markers by flow cytometry (176 variables) at baseline, and after 15 and 30 days of therapy. By attempting to link the evolution of peripheral lymphoid, myeloid cells and anti-PD-1 response, we observed that accumulation of lymphoid cells and monocytic MDSC (mMDSC) expressing, respectively, Tim-3 and galectin-9 is implicated in resistance to PD-1 blockade both for patients with primary or acquired secondary resistance to anti-PD-1. In vitro, anti-Tim-3 blocking antibody reverses resistance to anti-PD-1 in PBMC from lung cancer patients and high levels of blood mMDSC negatively impact on anti-PD-1 efficacy. Together, these data underline that the galectin-9/Tim-3 pathway and mMDSC are key mechanisms of primary or secondary resistance to anti-PD-1 and could be a new target for immunotherapy drug combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.