Wild-type (WT) zebrafish are commonly used in behavioral tests, but the term WT is not a precise description, and corresponds to many different strains (e.g., AB, TU, WIK, and others). Previous studies compared the physiological, behavioral, or metabolic characteristics of different zebrafish strains (indigenous WT populations versus laboratory WT strains). AB and TU are widely used, but at least one study has demonstrated behavioral differences between them. To choose the most appropriate strain for our experiments, we systematically screened behavioral responses of AB and TU fish in several assays. We analyzed the locomotion activity and responses to a light/dark challenge in adults and larvae, and exploratory behavior and color conditioning in adults. Differences were observed for all tests, the strains displaying particular behavior depending on the tests. As larvae, TU displayed a wider activity range than AB larvae at the onset of locomotor behavior; as adults, TU were more reactive to sudden light transitions and recovered the swimming activity faster in T-maze or homebase release in novel tank tests, whereas AB fish had more contrasted circadian rhythms and performed better in color learning. Strain-specific behavior should be considered when designing experiments using behavior.
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades leading to high concentrations in sediments of contaminated areas. To evaluate the consequences of long-term chronic exposure to PAHs, zebrafish were exposed, from their first meal at 5 days post fertilisation until they became reproducing adults, to diets spiked with three PAH fractions at three environmentally relevant concentrations with the medium concentration being in the range of 4.6-6.7 μg g(-1) for total quantified PAHs including the 16 US-EPA indicator PAHs and alkylated derivatives. The fractions used were representative of PAHs of pyrolytic (PY) origin or of two different oils of differing compositions, a heavy fuel (HO) and a light crude oil (LO). Fish growth was inhibited by all PAH fractions and the effects were sex specific: as determined with 9-month-old adults, exposure to the highest PY inhibited growth of females; exposure to the highest HO and LO inhibited growth of males; also, the highest HO dramatically reduced survival. Morphological analysis indicated a disruption of jaw growth in larvae and malformations in adults. Intestinal and pancreatic enzyme activities were abnormal in 2-month-old exposed fish. These effects may contribute to poor growth. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can promote lethal and sublethal effects which are likely to be detrimental for fish recruitment.
Azole fungicides are known inhibitors of the important enzyme class cytochrome P450 monooxygenases (CYPs), thereby influencing the detoxification of co-occurring substances via biotransformation. This synergism in mixtures containing an azole has mostly been studied by effect measurements, while the underlying mechanism has been less well investigated. In this study, six azole fungicides (cyproconazole, epoxiconazole, ketoconazole, prochloraz, propiconazole, and tebuconazole) were selected to investigate their synergistic potential and their CYP inhibition strength in the aquatic invertebrate Gammarus pulex. The strobilurin fungicide azoxystrobin was chosen as co-occurring substrate, and the synergistic potential was measured in terms of internal concentrations of azoxystrobin and associated biotransformation products (BTPs). Azoxystrobin is biotransformed by various reactions, and 18 BTPs were identified. By measuring internal concentrations of azoxystrobin and its BTPs with high-resolution tandem mass spectrometry in the presence and absence of azole fungicides followed by toxicokinetic modeling, we showed that the inhibition of CYP-catalyzed biotransformation reactions indeed played a role for the observed synergism. However, synergism was only observed for prochloraz at environmentally realistic concentrations. Increased uptake rate constants, an increase in the total internal concentration of azoxystrobin and its BTPs, in vivo assays for measuring CYP activities, and G. pulex video-tracking suggested that the 2-fold increase in bioaccumulation, and, thereby, the raised toxicity of azoxystrobin in the presence of prochloraz is not only caused by inhibited biotransformation but even more by increased azoxystrobin uptake induced by hyperactivity.
Aquatic organisms are consistently exposed to a mixture of micropollutants that can bioaccumulate, undergo biotransformation, and may exert mixture effects. However, little is known on the underlying mechanisms and species-specificity. Herein we investigated bioaccumulation, biotransformation and synergistic effects of azole (i.e. prochloraz) and strobilurin (i.e. azoxystrobin) fungicides in the two aquatic invertebrate species, Hyalella azteca and Gammarus pulex. Bioaccumulation of azoxystrobin was similar whereas bioaccumulation of prochloraz was slightly different in the two species but was still significantly below the REACH criteria for bioaccumulative substances. Similar biotransformation patterns were observed in both species, and only a few unique biotransformation reactions were detected in H. azteca such as malonyl-glucose and taurine conjugation. Toxicokinetic modeling additionally indicated that biotransformation is a more important elimination pathway in H. azteca. In mixtures, no-observed-adverse-effect levels of prochloraz decreased the LC 50 s of azoxystrobin in both species which correlated well with increased internal azoxystrobin concentrations. This synergistic effect is partly due to the inhibition of cytochrome P450 monooxygenases by prochloraz which subsequently triggered the reduced biotransformation of azoxystrobin (lower by 5 folds in H. azteca). The largely similar responses in both species suggest that the easier-to-cultivate H. azteca is a promising representative of invertebrates for toxicity testing.
In the last 10 years, behavior assessment has been developed as an indicator of neurotoxicity and an integrated indicator of physiological disruption. Polycyclic aromatic hydrocarbon (PAH) release into the environment has increased in recent decades resulting in high concentrations of these compounds in the sediment of contaminated areas. We evaluated the behavioral consequences of long-term chronic exposure to PAHs, by exposing zebrafish to diets spiked with three PAH fractions at environmentally relevant concentrations. Fish were exposed to these chemicals from their first meal (5 days postfertilization) until they became reproducing adults (at 6 months old). The fractions used were representative of PAHs of pyrolytic (PY) origin and of two oils differing in composition (a heavy fuel oil (HO) and a light crude oil (LO)). Several tests were carried out to evaluate circadian spontaneous swimming activity, responses to a challenge (photomotor response), exploratory tendencies, and anxiety levels. We found that dietary PAH exposure was associated with greater mobility, lower levels of exploratory activity, and higher levels of anxiety, particularly in fish exposed to the HO fraction and, to a lesser extent, the LO fraction. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can induce behavioral disruptions resulting in poorer fish performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.