Recent evidence suggests that blocking aberrant hedgehog pathway signaling may be a promising therapeutic strategy for the treatment of several types of cancer. Cyclopamine, a plant Veratrum alkaloid, is a natural product antagonist of the hedgehog pathway. In a previous report, a seven-membered D-ring semisynthetic analogue of cyclopamine, IPI-269609 (2), was shown to have greater acid stability and better aqueous solubility compared to cyclopamine. Further modifications of the A-ring system generated three series of analogues with improved potency and/or solubility. Lead compounds from each series were characterized in vitro and evaluated in vivo for biological activity and pharmacokinetic properties. These studies led to the discovery of IPI-926 (compound 28), a novel semisynthetic cyclopamine analogue with substantially improved pharmaceutical properties and potency and a favorable pharmacokinetic profile relative to cyclopamine and compound 2. As a result, complete tumor regression was observed in a Hh-dependent medulloblastoma allograft model after daily oral administration of 40 mg/kg of compound 28.
Heat shock protein 90 (Hsp90) is an emerging therapeutic target of interest for the treatment of cancer. Its role in protein homeostasis and the selective chaperoning of key signaling proteins in cancer survival and proliferation pathways has made it an attractive target of small molecule therapeutic intervention. 17-Allylamino-17-demethoxygeldanamycin (17-AAG), the most studied agent directed against Hsp90, suffers from poor physical-chemical properties that limit its clinical potential. Therefore, there exists a need for novel, patient-friendly Hsp90-directed agents for clinical investigation. IPI-504, the highly soluble hydroquinone hydrochloride derivative of 17-AAG, was synthesized as an Hsp90 inhibitor with favorable pharmaceutical properties. Its biochemical and biological activity was profiled in an Hsp90-binding assay, as well as in cancer-cell assays. Furthermore, the metabolic profile of IPI-504 was compared with that of 17-AAG, a geldanamycin analog currently in clinical trials. The anti-tumor activity of IPI-504 was tested as both a single agent as well as in combination with bortezomib in myeloma cell lines and in vivo xenograft models, and the retention of IPI-504 in tumor tissue was determined. In conclusion, IPI-504, a potent inhibitor of Hsp90, is efficacious in cellular and animal models of myeloma. It is synergistically efficacious with the proteasome inhibitor bortezomib and is preferentially retained in tumor tissues relative to plasma. Importantly, it was observed that IPI-504 interconverts with the known agent 17-AAG in vitro and in vivo via an oxidation-reduction equilibrium, and we demonstrate that IPI-504 is the slightly more potent inhibitor of Hsp90.T he heat shock response, first identified in 1962 by Ritossa (1), was initially characterized as the induction of select polypeptides in response to an acute cellular heat shock. These polypeptides were proteins that bound to partially unfolded proteins to prevent their aggregation and assist in their refolding (2, 3), and were termed chaperones. Of the heat shock proteins, heat shock protein 90 (Hsp90) in particular has been the subject of intense investigation. Work over the last decade has revealed not only a general protein chaperone role for Hsp90, but also a specific chaperone role in the binding of select conformations or metastable forms of signaling proteins (clients), thereby attenuating their signaling activity (4-6). Client proteins include the targets of key cancer survival and proliferation pathways, including Akt, Bcr-Abl, Her-2, mutant EGFR, and c-Kit, many of which are the subject of individual investigation for points of therapeutic intervention. Therefore, two functions of Hsp90 exist: (i) a general protein chaperone function (protein homeostasis) and (ii) a specific function to modulate the integrity of cell-signaling pathways through the proper folding of pathway members that are Hsp90 clients.Multiple myeloma (MM) is a neoplasm of terminally differentiated B cells (plasma cells) (7). Because of the high protein secr...
Herein is reported the synthesis of a novel class of hedgehog antagonists derived from cyclopamine. The acid sensitive D-ring of cyclopamine was homologated utilizing a sequence of chemoselective cyclopropanation and stereoselective acid-catalyzed rearrangement. Further modification of the A/B-ring homoallylic alcohol to the conjugated ketone led to the discovery of new cyclopamine analogues with improved pharmaceutical properties and in vitro potency (EC 50) ranging from 10 to 1000 nM.
PurposePonatinib is a novel tyrosine kinase inhibitor (TKI) specifically designed to inhibit native and mutated BCR–ABL. In the United States, ponatinib has received accelerated approval for adults with T315I-positive chronic myeloid leukemia (CML) or T315I (gatekeeper mutation)-positive, Philadelphia chromosome-positive, acute lymphoblastic leukemia (Ph + ALL), and patients with CML or Ph + ALL for whom no other TKI therapy is indicated. The objective of this phase 1, mass balance study was to evaluate the absorption, metabolism, and excretion of [14C]ponatinib in healthy subjects.MethodsA single 45-mg [14C]ponatinib dose was administered orally to six healthy male volunteers, and absorption, metabolism, and excretion were assessed.Results86.6 and 5.4% of the dose was recovered in feces and urine, respectively, during days 0–14 postdose. Median time to maximal plasma radioactivity was 5 h and mean terminal elimination half-life of radioactivity was 66.4 h. Ponatinib and its inactive carboxylic acid metabolite M14, the two major circulating radioactive components, accounted for 25.5 and 14.9% of the radioactivity in 0–24 h pooled plasma, with elimination half-lives of 27.4 and 33.7 h, respectively. Major metabolites in urine were M14 and its glucuronides, which, together with other M14-derived metabolites, represented 4.4% of the dose; ponatinib was not detected in urine. In feces, major radioactive components were ponatinib, M31 (hydroxylation), M42 (N-demethylation), and four methylated products accounting for 20.5, 17.7, 8.3, and 8.4% of the radioactive dose, respectively.ConclusionsPonatinib was readily absorbed in humans, metabolized through multiple pathways and was eliminated mostly in feces.Electronic supplementary materialThe online version of this article (doi:10.1007/s00280-017-3240-x) contains supplementary material, which is available to authorized users.
ABSTRACT:Inhibition of heat shock protein 90 (HSP90) results in the degradation of oncoproteins that drive malignant progression and induce cell death, thus making HSP90 a potential target of cancer therapy. 6-Chloro-9-(4-methoxy-3, 5-dimethyl-pyridin-2-ylmethyl)-9H-purin-2-ylamine (BIIB021), a synthetic HSP90 inhibitor, exhibited promising antitumor activity in preclinical models. It is currently in phase II clinical trials for the oral treatment of breast cancer. The objective of this study was to obtain both quantitative and qualitative metabolic profiles of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.