Cite this article: Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, Doyle MM. 2020 Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc. R. Soc. B 287: 20192736. http://dx.Emerging infectious diseases in humans are frequently caused by pathogens originating from animal hosts, and zoonotic disease outbreaks present a major challenge to global health. To investigate drivers of virus spillover, we evaluated the number of viruses mammalian species have shared with humans. We discovered that the number of zoonotic viruses detected in mammalian species scales positively with global species abundance, suggesting that virus transmission risk has been highest from animal species that have increased in abundance and even expanded their range by adapting to human-dominated landscapes. Domesticated species, primates and bats were identified as having more zoonotic viruses than other species. Among threatened wildlife species, those with population reductions owing to exploitation and loss of habitat shared more viruses with humans. Exploitation of wildlife through hunting and trade facilitates close contact between wildlife and humans, and our findings provide further evidence that exploitation, as well as anthropogenic activities that have caused losses in wildlife habitat quality, have increased opportunities for animal-human interactions and facilitated zoonotic disease transmission. Our study provides new evidence for assessing spillover risk from mammalian species and highlights convergent processes whereby the causes of wildlife population declines have facilitated the transmission of animal viruses to humans.
The feasibility of developing a forecasting system for carpogenic germination of Sclerotinia sclerotiorum sclerotia was investigated in the laboratory by determining key relationships among temperature, soil water potential, and carpogenic germination for sclerotia of two S. sclerotiorum isolates. Germination of multiple burials of sclerotia to produce apothecia also was assessed in the field with concurrent recording of environmental data to examine patterns of germination under different fluctuating conditions. Carpogenic germination of sclerotia occurred between 5 and 25 degrees C but only for soil water potentials of >/=-100 kPa for both S. sclerotiorum isolates. Little or no germination occurred at 26 or 29 degrees C. At optimum temperatures of 15 to 20 degrees C, sclerotia buried in soil and placed in illuminated growth cabinets produced stipes after 20 to 27 days and apothecia after 27 to 34 days. Temperature, therefore, had a significant effect on both the rate of germination of sclerotia and the final number germinated. Rate of germination was correlated positively with temperature and final number of sclerotia germinated was related to temperature according to a probit model. Thermal time analysis of field data with constraints for temperature and water potential showed that the mean degree days to 10% germination of sclerotia in 2000 and 2001 was 285 and 279, respecttively, and generally was a good predictor of the observed appearance of apothecia. Neither thermal time nor relationships established in the laboratory could account for a decline in final percentage of germination for sclerotia buried from mid-May compared with earlier burials. Exposure to high temperatures may explain this effect. This, and other factors, require investigation before relationships derived in the laboratory or thermal time can be incorporated into a forecasting system for carpogenic germination.
Flaviviruses continue to cause globally relevant epidemics and have emerged or re-emerged in regions that were previously unaffected. Factors determining emergence of flaviviruses and continuing circulation in sylvatic cycles are incompletely understood. Here we identify potential sylvatic reservoirs of flaviviruses and characterize the macro-ecological traits common to known wildlife hosts to predict the risk of sylvatic flavivirus transmission among wildlife and identify regions that could be vulnerable to outbreaks. We evaluate variability in wildlife hosts for zoonotic flaviviruses and find that flaviviruses group together in distinct clusters with similar hosts. Models incorporating ecological and climatic variables as well as life history traits shared by flaviviruses predict new host species with similar host characteristics. The combination of vector distribution data with models for flavivirus hosts allows for prediction of global vulnerability to flaviviruses and provides potential targets for disease surveillance in animals and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.