Complex brains and behaviors have occurred repeatedly within vertebrate classes throughout evolution. What adaptive pressures drive such changes? Both environmental and social features have been implicated in the expansion of select brain structures, particularly the telencephalon. East African cichlid fishes provide a superb opportunity to analyze the social and ecological correlates of neural phenotypes and their evolution. As a result of rapid, recent, and repeated radiations, there are hundreds of closely-related species available for study, with an astonishing diversity in habitat preferences and social behaviors. In this study, we present quantitative ecological, social, and neuroanatomical data for closely-related species from the (monophyletic) Ectodini clade of Lake Tanganyikan cichlid fish. The species differed either in habitat preference or social organization. After accounting for phylogeny with independent contrasts, we find that environmental and social factors differentially affect the brain, with environmental factors showing a broader effect on a range of brain structures compared to social factors. Five out of seven of the brain measures show a relationship with habitat measures. Brain size and cerebellar size are positively correlated with species number (which is correlated with habitat complexity); the medulla and olfactory bulb are negatively correlated with habitat measures. The telencephalon shows a trend toward a positive correlation with rock size. In contrast, only two brain structures, the telencephalon and hypothalamus, are correlated with social factors. Telencephalic size is larger in monogamous species compared to polygamous species, as well as with increased numbers of individuals; monogamy is also associated with smaller hypothalamic size. Our results suggest that selection or drift can act independently on different brain regions as the species diverge into different habitats and social systems.
More complex brains and behaviors have arisen repeatedly throughout both vertebrate and invertebrate evolution. The challenge is to tease apart the forces underlying such change. In this review, I show how habitat complexity influences both brain and behavior in African cichlid fishes, drawing on examples from primates and birds where appropriate. These species groups share a number of similarities. They exhibit a considerable range of brain to body weight within their group. Often highly visual, the species show a diversity of habitat types, social systems, and cognitive abilities. Phylogenies are well established. In closely-related cichlid fishes from the monophyletic Ectodine clade of Lake Tanganyika, habitat complexity is directly correlated with social variables, including species richness, diversity, and abundance. Total brain size, telencephalic and cerebellar size are positively correlated with habitat complexity. Visual acuity and spatial memory are also enhanced in cichlids living in more complex environments. I speculate that species-specific neural effects of environmental complexity could be the consequence of the corresponding social changes. However, environmental and social forces affect brains differently. Environmental forces exert a broader effect on brain structures than social ones, suggesting either allometric expansion of the brain structures in concert with brain size and/or co-evolution of these structures. To advance our understanding of the mechanism by which habitat complexity affects brain and behavior will require the use of closely-related species, quantification of complexity, hypothesis testing restricting analysis to a single variable and path analyses to explore the order of importance of such variables. We will also need new experimental paradigms exploring the cognitive and survival value of brain and brain structure changes both in the laboratory and in the wild.
1. The amplitude-coding pyramidal neurons of the first-order nucleus in weakly electric gymnotiform fish (Eigenmannia), the electrosensory lateral line lobe (ELL), exhibit 2 major physiological transformations of primary afferent input. Pyramidal cells rapidly adapt to a step change in amplitude, and they have a center/surround receptive-field organization. This study examined the physiological role of GABAergic inhibition on pyramidal cells. GABAergic synapses onto the somata of pyramidal cells primarily originate from granule-cell interneurons along with descending input. 2. Pyramidal cells fall into two physiologically distinct categories: E units, which are excited by a rise in stimulus amplitude, and I units, which are inhibited by a rise in stimulus amplitude. Microiontophoretic application of bicuculline methiodide onto both types of pyramidal cells increased the time constant of adaptation, defined as the time required for the neuron's response to decay to 37% of its maximum value, by 70-90%. The peak firing rate of E units to a step increase in stimulus amplitude increased by 49%, while the firing rate of I units did not change significantly. 3. Bicuculline application demonstrated that GABAergic inhibition may contribute to the strict segregation of E and I response properties. In the presence of bicuculline, many E units (normally excited only by stimulus amplitude increases) became excited by both increases and decreases; many I units (normally excited only by amplitude decreases) also became excited to increases. 4. The size of the excitatory receptive-field of E units was not affected by bicuculline, although response magnitude increased. The inhibitory surround increased in spatial extent by 175% with bicuculline administration. Neither the size of the I unit receptive-field center nor the response magnitude changed in the presence of bicuculline. The antagonistic surround of I units, however, increased by 49%. 5. The anatomy of the ELL is well understood (see Carr and Maler 1986). The physiological results obtained in this study, along with the results of Bastian (1986a, b), further our understanding of the functional role of the ELL circuitry. Our results suggest that spatial and temporal response properties of pyramidal cells are regulated by different but interacting inhibitory interneurons, some of which use GABA as a neurotransmitter. The activity of these interneurons is in turn controlled by descending feedback systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.